Previous |  Up |  Next

Article

Title: On $\star $- associated comonotone functions (English)
Author: Hutník, Ondrej
Author: Pócs, Jozef
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 54
Issue: 2
Year: 2018
Pages: 268-278
Summary lang: English
.
Category: math
.
Summary: We give a positive answer to two open problems stated by Boczek and Kaluszka in their paper [1]. The first one deals with an algebraic characterization of comonotonicity. We show that the class of binary operations solving this problem contains any strictly monotone right-continuous operation. More precisely, the comonotonicity of functions is equivalent not only to $+$-associatedness of functions (as proved by Boczek and Kaluszka), but also to their $\star$-associatedness with $\star$ being an arbitrary strictly monotone and right-continuous binary operation. The second open problem deals with an existence of a pair of binary operations for which the generalized upper and lower Sugeno integrals coincide. Using a fairly elementary observation we show that there are many such operations, for instance binary operations generated by infima and suprema preserving functions. (English)
Keyword: comonotone functions
Keyword: binary operation
Keyword: $\star $-associatedness
Keyword: Sugeno integral
MSC: 26A48
MSC: 28E10
idZBL: Zbl 06890419
idMR: MR3807714
DOI: 10.14736/kyb-2018-2-0268
.
Date available: 2018-05-30T16:01:01Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147193
.
Reference: [1] Boczek, M., Kaluszka, M.: On the Minkowski-Hölder type inequalities for generalized Sugeno integrals with an application..Kybernetika 52 (2016), 3, 329-347. MR 3532510, 10.14736/kyb-2016-3-0329
Reference: [2] Boczek, M., Kaluszka, M.: On conditions under which some generalized Sugeno integrals coincide: A solution to Dubois problem.Fuzzy Sets and Systems 326 (2017), 81-88. MR 3694474, 10.1016/j.fss.2017.06.004
Reference: [3] Denneberg, D.: Non-Additive Measure and Integral..Kluwer Academic Publishers, Dordrecht/Boston/London, 1994. MR 1320048, 10.1007/978-94-017-2434-0
Reference: [4] Grabisch, M.: Set Functions, Games and Capacities in Decision Making..Theory and Decision Library C 46, Springer International Publishing 2016. MR 3524619
Reference: [5] Halaš, R., Mesiar, R., Pócs, J.: Congruences and the discrete Sugeno integrals on bounded distributive lattices..Inform. Sci. 367-368 (2016), 443-448. 10.1016/j.ins.2016.06.017
Reference: [6] Halaš, R., Mesiar, R., Pócs, J.: Generalized comonotonicity and new axiomatizations of Sugeno integrals on bounded distributive lattices..Int. J. Approx. Reason. 81 (2017), 183-192. MR 3589740, 10.1016/j.ijar.2016.11.012
Reference: [7] Kandel, A., Byatt, W. J.: Fuzzy sets, fuzzy algebra and fuzzy statistics..Proc. IEEE 66 (1978), 1619-1639. MR 0586279, 10.1109/proc.1978.11171
Reference: [8] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms..Trends in Logic. Studia Logica Library 8, Kluwer Academic Publishers, 2000. Zbl 1087.20041, MR 1790096, 10.1007/978-94-015-9540-7
Reference: [9] Mitrinović, D. S., Pečarić, J. E., Fink, A. M.: Classical and New Inequalities in Analysis..Kluwer Academic Publishers, Dordrecht/Boston/London, 1993. MR 1220224, 10.1007/978-94-017-1043-5
Reference: [10] Puccetti, G., Scarsini, M.: Multivariate comonotonicity..J. Multivariate Anal. 101 (2010), 1, 291-304. MR 2557634, 10.1016/j.jmva.2009.08.003
Reference: [11] Suárez-García, F., Álvarez-Gil, P.: Two families of fuzzy integrals.. 10.1016/0165-0114(86)90028-x
Reference: [12] Sugeno, M., Murofushi, T.: Pseudo-additive measures and integrals..J. Math. Anal. Appl. 122 (1987), 197-222. Zbl 0611.28010, MR 0874969, 10.1016/0022-247x(87)90354-4
Reference: [13] Wang, Z., Klir, G.: Generalized Measure Theory..IFSR International Series on Systems Science and Engineering, Vol. 25, Springer, 2009. Zbl 1184.28002, MR 2453907, 10.1007/978-0-387-76852-6
.

Files

Files Size Format View
Kybernetika_54-2018-2_3.pdf 505.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo