Title:
|
On $\star $- associated comonotone functions (English) |
Author:
|
Hutník, Ondrej |
Author:
|
Pócs, Jozef |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 (print) |
ISSN:
|
1805-949X (online) |
Volume:
|
54 |
Issue:
|
2 |
Year:
|
2018 |
Pages:
|
268-278 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We give a positive answer to two open problems stated by Boczek and Kaluszka in their paper [1]. The first one deals with an algebraic characterization of comonotonicity. We show that the class of binary operations solving this problem contains any strictly monotone right-continuous operation. More precisely, the comonotonicity of functions is equivalent not only to $+$-associatedness of functions (as proved by Boczek and Kaluszka), but also to their $\star$-associatedness with $\star$ being an arbitrary strictly monotone and right-continuous binary operation. The second open problem deals with an existence of a pair of binary operations for which the generalized upper and lower Sugeno integrals coincide. Using a fairly elementary observation we show that there are many such operations, for instance binary operations generated by infima and suprema preserving functions. (English) |
Keyword:
|
comonotone functions |
Keyword:
|
binary operation |
Keyword:
|
$\star $-associatedness |
Keyword:
|
Sugeno integral |
MSC:
|
26A48 |
MSC:
|
28E10 |
idZBL:
|
Zbl 06890419 |
idMR:
|
MR3807714 |
DOI:
|
10.14736/kyb-2018-2-0268 |
. |
Date available:
|
2018-05-30T16:01:01Z |
Last updated:
|
2020-01-05 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147193 |
. |
Reference:
|
[1] Boczek, M., Kaluszka, M.: On the Minkowski-Hölder type inequalities for generalized Sugeno integrals with an application..Kybernetika 52 (2016), 3, 329-347. MR 3532510, 10.14736/kyb-2016-3-0329 |
Reference:
|
[2] Boczek, M., Kaluszka, M.: On conditions under which some generalized Sugeno integrals coincide: A solution to Dubois problem.Fuzzy Sets and Systems 326 (2017), 81-88. MR 3694474, 10.1016/j.fss.2017.06.004 |
Reference:
|
[3] Denneberg, D.: Non-Additive Measure and Integral..Kluwer Academic Publishers, Dordrecht/Boston/London, 1994. MR 1320048, 10.1007/978-94-017-2434-0 |
Reference:
|
[4] Grabisch, M.: Set Functions, Games and Capacities in Decision Making..Theory and Decision Library C 46, Springer International Publishing 2016. MR 3524619 |
Reference:
|
[5] Halaš, R., Mesiar, R., Pócs, J.: Congruences and the discrete Sugeno integrals on bounded distributive lattices..Inform. Sci. 367-368 (2016), 443-448. 10.1016/j.ins.2016.06.017 |
Reference:
|
[6] Halaš, R., Mesiar, R., Pócs, J.: Generalized comonotonicity and new axiomatizations of Sugeno integrals on bounded distributive lattices..Int. J. Approx. Reason. 81 (2017), 183-192. MR 3589740, 10.1016/j.ijar.2016.11.012 |
Reference:
|
[7] Kandel, A., Byatt, W. J.: Fuzzy sets, fuzzy algebra and fuzzy statistics..Proc. IEEE 66 (1978), 1619-1639. MR 0586279, 10.1109/proc.1978.11171 |
Reference:
|
[8] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms..Trends in Logic. Studia Logica Library 8, Kluwer Academic Publishers, 2000. Zbl 1087.20041, MR 1790096, 10.1007/978-94-015-9540-7 |
Reference:
|
[9] Mitrinović, D. S., Pečarić, J. E., Fink, A. M.: Classical and New Inequalities in Analysis..Kluwer Academic Publishers, Dordrecht/Boston/London, 1993. MR 1220224, 10.1007/978-94-017-1043-5 |
Reference:
|
[10] Puccetti, G., Scarsini, M.: Multivariate comonotonicity..J. Multivariate Anal. 101 (2010), 1, 291-304. MR 2557634, 10.1016/j.jmva.2009.08.003 |
Reference:
|
[11] Suárez-García, F., Álvarez-Gil, P.: Two families of fuzzy integrals.. 10.1016/0165-0114(86)90028-x |
Reference:
|
[12] Sugeno, M., Murofushi, T.: Pseudo-additive measures and integrals..J. Math. Anal. Appl. 122 (1987), 197-222. Zbl 0611.28010, MR 0874969, 10.1016/0022-247x(87)90354-4 |
Reference:
|
[13] Wang, Z., Klir, G.: Generalized Measure Theory..IFSR International Series on Systems Science and Engineering, Vol. 25, Springer, 2009. Zbl 1184.28002, MR 2453907, 10.1007/978-0-387-76852-6 |
. |