Previous |  Up |  Next

Article

Title: Existence, Consistency and computer simulation for selected variants of minimum distance estimators (English)
Author: Kůs, Václav
Author: Morales, Domingo
Author: Hrabáková, Jitka
Author: Frýdlová, Iva
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 54
Issue: 2
Year: 2018
Pages: 336-350
Summary lang: English
.
Category: math
.
Summary: The paper deals with sufficient conditions for the existence of general approximate minimum distance estimator (AMDE) of a probability density function $f_0$ on the real line. It shows that the AMDE always exists when the bounded $\phi$-divergence, Kolmogorov, Lévy, Cramér, or discrepancy distance is used. Consequently, $n^{-1/2}$ consistency rate in any bounded $\phi$-divergence is established for Kolmogorov, Lévy, and discrepancy estimators under the condition that the degree of variations of the corresponding family of densities is finite. A simulation experiment empirically studies the performance of the approximate minimum Kolmogorov estimator (AMKE) and some histogram-based variants of approximate minimum divergence estimators, like power type and Le Cam, under six distributions (Uniform, Normal, Logistic, Laplace, Cauchy, Weibull). A comparison with the standard estimators (moment/maximum likelihood/median) is provided for sample sizes $n=10,20,50,120,250$. The simulation analyzes the behaviour of estimators through different families of distributions. It is shown that the performance of AMKE differs from the other estimators with respect to family type and that the AMKE estimators cope more easily with the Cauchy distribution than standard or divergence based estimators, especially for small sample sizes. (English)
Keyword: Kolmogorov distance
Keyword: $\phi $-divergence
Keyword: minimum distance estimator
Keyword: consistency rate
Keyword: computer simulation
MSC: 62B05
MSC: 62H30
idZBL: Zbl 06890424
idMR: MR3807719
DOI: 10.14736/kyb-2018-2-0336
.
Date available: 2018-05-30T16:09:16Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147198
.
Reference: [1] Mohamad, D. Al: Towards a better understanding of the dual representation of phi divergences..Statistical Papers (published on-line 2016.) 10.1007/s00362-016-0812-5
Reference: [2] Barron, A. R.: The convergence in information of probability density estimators..In: IEEE Int. Symp. Information Theory, Kobe 1988.
Reference: [3] Beran, R.: Minimum Hellinger distance estimator for parametric models..Ann. Statist. 5 (1977), 455-463. MR 0448700, 10.1214/aos/1176343842
Reference: [4] Berger, A.: Remark on separable spaces of probability measures..An. Math. Statist. 22 (1951), 119-120. MR 0039789, 10.1214/aoms/1177729701
Reference: [5] Broniatowski, M., Toma, A., Vajda, I.: Decomposable pseudodistances and applications in statistical estimation..J. Statist. Plann. Inference. 142 (2012), 9, 2574-2585. MR 2922007, 10.1016/j.jspi.2012.03.019
Reference: [6] Csiszár, I.: Eine Informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizit on Markhoffschen Ketten..Publ. Math. Inst. Hungar. Acad. Sci., Ser. A 8 (1963), 84-108. MR 0164374
Reference: [7] Csiszár, I.: Information-type measures of difference of probability distributions and indirect observations..Studia Sci. Math. Hungar. 2 (1967), 299-318. MR 0219345
Reference: [8] Frýdlová, I., Vajda, I., Kůs, V.: Modified power divergence estimators in normal model - simulation and comparative study..Kybernetika 48 (2012), 4, 795-808. MR 3013399
Reference: [9] Gibbs, A. L., Su, F. E.: On choosing and bounding probability metrics..Int. Statist. Rev. 70 (2002), 419-435. 10.1111/j.1751-5823.2002.tb00178.x
Reference: [10] Győrfi, L., Vajda, I., Meulen, E. C. van der: Family of point estimates yielded by $L_1$-consistent density estimate..In: $L_1$-Statistical Analysis and Related Methods (Y. Dodge, ed.), Elsevier, Amsterdam 1992, pp. 415-430. MR 1214843
Reference: [11] Győrfi, L., Vajda, I., Meulen, E. C. van der: Minimum Hellinger distance point estimates consistent under weak family regularity..Math. Methods Statist. 3 (1994), 25-45. MR 1272629
Reference: [12] Győrfi, L., Vajda, I., Meulen, E. C. van der: Minimum Kolmogorov distance estimates of parameters and parametrized distributions..Metrika 43 (1996), 237-255. MR 1394805, 10.1007/bf02613911
Reference: [13] Hrabáková, J., Kůs, V.: The Consistency and Robustness of Modified Cramér-Von Mises and Kolmogorov-Cramér Estimators..Comm. Statist. - Theory and Methods 42 (2013), 20, 3665-3677. MR 3170957, 10.1080/03610926.2013.802806
Reference: [14] Hrabáková, J., Kůs, V.: Notes on consistency of some minimum distance estimators with simulation results..Metrika 80 (2017), 243-257. MR 3597584, 10.1007/s00184-016-0601-0
Reference: [15] Kafka, P., Ősterreicher, F., Vincze, I.: On powers of $f$-divergences defining a distance..Studia Sci. Mathem. Hungarica 26 (1991), 415-422. MR 1197090
Reference: [16] Kůs, V.: Blended $\phi$-divergences with examples..Kybernetika 39 (2003), 43-54. MR 1980123
Reference: [17] Kůs, V.: Nonparametric Density Estimates Consistent of the Order of $n^{-1/2}$ in the $L_1$-norm..Metrika 60 (2004), 1-14. MR 2100162, 10.1007/s001840300286
Reference: [18] Kůs, V., Morales, D., Vajda, I.: Extensions of the parametric families of divergences used in statistical inference..Kybernetika 44 (2008), 1, 95-112. MR 2405058
Reference: [19] Cam, L. Le: Asymptotic Methods in Statistical Decision Theory..Springer, New York 1986. MR 0856411, 10.1007/978-1-4612-4946-7
Reference: [20] Liese, F., Vajda, I.: Convex Statistical Distances..Teubner, Leipzig 1987. MR 0926905
Reference: [21] Liese, F., Vajda, I.: On divergences and informations in statistics and information theory..IEEE Trans. Inform. Theory 52 (2006), 4394-4412. MR 2300826, 10.1109/tit.2006.881731
Reference: [22] Matusita, K.: Distance and decision rules..Ann. Inst. Statist. Math. 16 (1964), 305-315. MR 0172419, 10.1007/bf02868578
Reference: [23] Ősterreicher, F.: On a class of perimeter-type distances of probability distributions..Kybernetika 32 (1996), 4, 389-393. MR 1420130
Reference: [24] Pardo, L.: Statistical Inference Based on Divergence Measures..Chapman and Hall, Boston 2006. MR 2183173, 10.1201/9781420034813
Reference: [25] Pfanzagl, J.: Parametric Statistical Theory..W. de Gruyter, Berlin 1994. MR 1291393, 10.1515/9783110889765
Reference: [26] Vajda, I.: Theory of Statistical Inference and Information..Kluwer, Boston 1989.
.

Files

Files Size Format View
Kybernetika_54-2018-2_8.pdf 762.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo