Previous |  Up |  Next

Article

Title: Polynomials with values which are powers of integers (English)
Author: Boumahdi, Rachid
Author: Larone, Jesse
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 54
Issue: 2
Year: 2018
Pages: 119-125
Summary lang: English
.
Category: math
.
Summary: Let $P$ be a polynomial with integral coefficients. Shapiro showed that if the values of $P$ at infinitely many blocks of consecutive integers are of the form $Q(m)$, where $Q$ is a polynomial with integral coefficients, then $P(x)=Q( R(x))$ for some polynomial $R$. In this paper, we show that if the values of $P$ at finitely many blocks of consecutive integers, each greater than a provided bound, are of the form $m^q$ where $q$ is an integer greater than 1, then $P(x)=( R(x))^q$ for some polynomial $R(x)$. (English)
Keyword: integer-valued polynomial
MSC: 13F20
idZBL: Zbl 06890309
idMR: MR3813739
DOI: 10.5817/AM2018-2-119
.
Date available: 2018-06-05T14:17:59Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147218
.
Reference: [1] Baker, A.: Bounds for the solutions of the hyperelliptic equation.Proc. Cambridge Philos. Soc. 65 (1969), 439–444.
Reference: [2] Fuchs, W.H.J.: A polynomial the square of another polynomial.Amer. Math. Monthly 57 (1950), 114–116.
Reference: [3] Jordan, C.: Calculus of Finite Differences.Chelsea Publishing Company, New York, N.Y., 1950, 2nd edition.
Reference: [4] Kojima, T.: Note on number-theoretical properties of algebraic functions.Tohoku Math. J. 8 (1915).
Reference: [5] LeVeque, W.J.: On the equation $y^m=f(x)$.Acta. Arith. IX (1964), 209–219. 10.4064/aa-9-3-209-219
Reference: [6] Masser, D.W.: Polynomial bounds for Diophantine equations.Amer. Math. Monthly (1980), 486–488.
Reference: [7] Poulakis, D.: A simple method for solving the Diophantine equation $Y^2=X^4+aX^3+bX^2+cX+d$.Elem. Math. 54 (1) (1999), 32–36.
Reference: [8] Rolle, M.: Traité d’algèbre.Paris, 1690.
Reference: [9] Shapiro, H.S.: The range of an integer-valued polynomial.Amer. Math. Monthly 64 (1957). 10.2307/2310169
Reference: [10] Szalay, L.: Superelliptic equations of the form $y^p=x^{kp}+a_{kp-1}x^{kp-1}+\cdots +a_0$.Bull. Greek Math. Soc. 46 (2002), 23–33. MR 1924066
Reference: [11] Tijdeman, R.: On the equation of Catalan.Acta Arith. 29 (2) (1976), 197–209. 10.4064/aa-29-2-197-209
Reference: [12] Voutier, P.M.: An upper bound for the size of integral solutions to $Y^m=f(X)$.J. Number Theory 53 (1995), 247–271. 10.1006/jnth.1995.1090
Reference: [13] Walsh, P.G.: A quantitative version of Runge’s theorem on Diophantine equations.Acta Arith. 62 (2) (1992), 157–172. 10.4064/aa-62-2-157-172
.

Files

Files Size Format View
ArchMathRetro_054-2018-2_4.pdf 497.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo