Title:
|
Polynomials with values which are powers of integers (English) |
Author:
|
Boumahdi, Rachid |
Author:
|
Larone, Jesse |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
54 |
Issue:
|
2 |
Year:
|
2018 |
Pages:
|
119-125 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $P$ be a polynomial with integral coefficients. Shapiro showed that if the values of $P$ at infinitely many blocks of consecutive integers are of the form $Q(m)$, where $Q$ is a polynomial with integral coefficients, then $P(x)=Q( R(x))$ for some polynomial $R$. In this paper, we show that if the values of $P$ at finitely many blocks of consecutive integers, each greater than a provided bound, are of the form $m^q$ where $q$ is an integer greater than 1, then $P(x)=( R(x))^q$ for some polynomial $R(x)$. (English) |
Keyword:
|
integer-valued polynomial |
MSC:
|
13F20 |
idZBL:
|
Zbl 06890309 |
idMR:
|
MR3813739 |
DOI:
|
10.5817/AM2018-2-119 |
. |
Date available:
|
2018-06-05T14:17:59Z |
Last updated:
|
2020-01-05 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147218 |
. |
Reference:
|
[1] Baker, A.: Bounds for the solutions of the hyperelliptic equation.Proc. Cambridge Philos. Soc. 65 (1969), 439–444. |
Reference:
|
[2] Fuchs, W.H.J.: A polynomial the square of another polynomial.Amer. Math. Monthly 57 (1950), 114–116. |
Reference:
|
[3] Jordan, C.: Calculus of Finite Differences.Chelsea Publishing Company, New York, N.Y., 1950, 2nd edition. |
Reference:
|
[4] Kojima, T.: Note on number-theoretical properties of algebraic functions.Tohoku Math. J. 8 (1915). |
Reference:
|
[5] LeVeque, W.J.: On the equation $y^m=f(x)$.Acta. Arith. IX (1964), 209–219. 10.4064/aa-9-3-209-219 |
Reference:
|
[6] Masser, D.W.: Polynomial bounds for Diophantine equations.Amer. Math. Monthly (1980), 486–488. |
Reference:
|
[7] Poulakis, D.: A simple method for solving the Diophantine equation $Y^2=X^4+aX^3+bX^2+cX+d$.Elem. Math. 54 (1) (1999), 32–36. |
Reference:
|
[8] Rolle, M.: Traité d’algèbre.Paris, 1690. |
Reference:
|
[9] Shapiro, H.S.: The range of an integer-valued polynomial.Amer. Math. Monthly 64 (1957). 10.2307/2310169 |
Reference:
|
[10] Szalay, L.: Superelliptic equations of the form $y^p=x^{kp}+a_{kp-1}x^{kp-1}+\cdots +a_0$.Bull. Greek Math. Soc. 46 (2002), 23–33. MR 1924066 |
Reference:
|
[11] Tijdeman, R.: On the equation of Catalan.Acta Arith. 29 (2) (1976), 197–209. 10.4064/aa-29-2-197-209 |
Reference:
|
[12] Voutier, P.M.: An upper bound for the size of integral solutions to $Y^m=f(X)$.J. Number Theory 53 (1995), 247–271. 10.1006/jnth.1995.1090 |
Reference:
|
[13] Walsh, P.G.: A quantitative version of Runge’s theorem on Diophantine equations.Acta Arith. 62 (2) (1992), 157–172. 10.4064/aa-62-2-157-172 |
. |