Previous |  Up |  Next

Article

Title: More on betweenness-uniform graphs (English)
Author: Coroničová Hurajová, Jana
Author: Madaras, Tomáš
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 68
Issue: 2
Year: 2018
Pages: 293-306
Summary lang: English
.
Category: math
.
Summary: We study graphs whose vertices possess the same value of betweenness centrality (which is defined as the sum of relative numbers of shortest paths passing through a given vertex). Extending previously known results of S. Gago, J. Hurajová, T. Madaras (2013), we show that, apart of cycles, such graphs cannot contain 2-valent vertices and, moreover, are 3-connected if their diameter is 2. In addition, we prove that the betweenness uniformity is satisfied in a wide graph family of semi-symmetric graphs, which enables us to construct a variety of nontrivial cubic betweenness-uniform graphs. (English)
Keyword: betweenness centrality
Keyword: betweenness-uniform graph
MSC: 05C15
idZBL: Zbl 06890374
idMR: MR3819175
DOI: 10.21136/CMJ.2018.0087-16
.
Date available: 2018-06-11T10:50:22Z
Last updated: 2020-07-06
Stable URL: http://hdl.handle.net/10338.dmlcz/147219
.
Reference: [1] Akiyama, J., Ando, K., Avis, D.: Miscellaneous properties of equi-eccentric graphs.Convexity and Graph Theory Proc. Conf., Jerusalem, 1981, Ann. Discrete Math. 20; North-Holland Mathematics Studies 87, North-Holland, Amsterdam (1984), 13-23. Zbl 0566.05053, MR 0791008, 10.1016/S0304-0208(08)72802-0
Reference: [2] Balakrishnan, K., Changat, M., Peterin, I., Špacapan, S., Šparl, P., Subhamathi, A. R.: Strongly distance-balanced graphs and graph products.Eur. J. Comb. 30 (2009), 1048-1053. Zbl 1185.05052, MR 2513907, 10.1016/j.ejc.2008.09.018
Reference: [3] Buckley, F.: Self-centered graphs with a given radius.Proc. 10th southeast. Conf. Combinatorics, Graph Theory and Computing, Boca Raton, 1979 Congr. Numerantium 23 (1979), 211-215. Zbl 0426.05034, MR 0561047
Reference: [4] Buckley, F.: Self-centered graphs.Proc. Conf., Jinan, 1986 Ann. N. Y. Acad. Sci. 576, New York Academy of Sciences, New York (1989), 71-78. Zbl 0792.05050, MR 1110802, 10.1111/j.1749-6632.1989.tb16384.x
Reference: [5] Caporossi, G., Paiva, M., Vukičević, D., Segatto, M.: Centrality and betweenness: vertex and edge decomposition of the Wiener index.MATCH Commun. Math. Comput. Chem. 68 (2012), 293-302. Zbl 1289.05057, MR 2986488
Reference: [6] Comellas, F., Gago, S.: Spectral bounds for the betweenness of a graph.Linear Algebra Appl. 423 (2007), 74-80. Zbl 1114.05058, MR 2312324, 10.1016/j.laa.2006.08.027
Reference: [7] Diestel, R.: Graph Theory.Graduate Texts in Mathematics 173, Springer, Berlin (2010). Zbl 1204.05001, MR 2744811, 10.1007/978-3-662-53622-3
Reference: [8] Freeman, L. C.: A set of measures of centrality based on betweenness.Sociometry 40 (1977), 35-41. 10.2307/3033543
Reference: [9] Gago, S., Hurajová, J. Coroničová, Madaras, T.: On betweenness-uniform graphs.Czech. Math. J. 63 (2013), 629-642. Zbl 1299.05085, MR 3125646, 10.1007/s10587-013-0044-y
Reference: [10] Knor, M., Madaras, T.: On farness- and reciprocally-selfcentric antisymmetric graphs.Congr. Numerantium 171 (2004), 173-178. Zbl 1064.05052, MR 2122106
Reference: [11] Malnič, A., Marušič, D., Potočnik, P., Wang, C.: An infinite family of cubic edge- but not vertex-transitive graphs.Discrete Math. 280 (2004), 133-148. Zbl 1041.05039, MR 2043804, 10.1016/j.disc.2003.07.004
Reference: [12] Plesník, J.: On the sum of all distances in a graph or digraph.J. Graph Theory 8 (1984), 1-21. Zbl 0552.05048, MR 0732013, 10.1002/jgt.3190080102
Reference: [13] Weisstein, E. W.: Generalized Petersen Graph.From MathWorld---A Wolfram Web Resource available at http://mathworld.wolfram.com/GeneralizedPetersenGraph.html.
.

Files

Files Size Format View
CzechMathJ_68-2018-2_1.pdf 481.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo