Previous |  Up |  Next

Article

Keywords:
Aluthge transform; Moore-Penrose inverse; weighted composition operator; conditional expectation; centered operator
Summary:
We describe the centered weighted composition operators on $L^2(\Sigma )$ in terms of their defining symbols. Our characterizations extend Embry-Wardrop-Lambert's theorem on centered composition operators.
References:
[1] Caradus, S. R.: Generalized Inverses and Operator Theory. Queen's Pap. Pure Appl. Math. 50. Queen's University, Kingston, Ontario (1978). MR 0523736 | Zbl 0434.47003
[2] Embry-Wardrop, M., Lambert, A.: Measurable transformations and centred composition operators. Proc. R. Ir. Acad., Sect. A 90 (1990), 165-172. MR 1150455 | Zbl 0753.47011
[3] Embry-Wardrop, M., Lambert, A.: Subnormality for the adjoint of a composition operator on $L^2$. J. Oper. Theory 25 (1991), 309-318. MR 1203036 | Zbl 0795.47022
[4] Giselsson, O.: Half-centered operators. Online https://arxiv.org/pdf/1602.05081v1.pdf 44 pages.
[5] Hoover, T., Lambert, A., Quinn, J.: The Markov process determined by a weighted composition operator. Stud. Math. 72 (1982), 225-235. DOI 10.4064/sm-72-3-225-236 | MR 0671398 | Zbl 0503.47007
[6] Lambert, A.: Hyponormal composition operators. Bull. Lond. Math. Soc. 18 (1986), 395-400. DOI 10.1112/blms/18.4.395 | MR 0838810 | Zbl 0624.47014
[7] Morrel, B. B., Muhly, P. S.: Centered operators. Studia Math. 51 (1974), 251-263. DOI 10.4064/sm-51-3-251-263 | MR 0355658 | Zbl 0258.47019
[8] Singh, R. K., Komal, B. S.: Composition operators. Bull. Aust. Math. Soc. 18 (1978), 439-446. DOI 10.1017/S0004972700008303 | MR 0508815 | Zbl 0377.47029
[9] Singh, R. K., Manhas, J. S.: Composition Operators on Function Spaces. North-Holland Mathematics Studies 179. North-Holland Publishing, Amsterdam (1993). DOI 10.1016/s0304-0208(08)x7086-0 | MR 1246562 | Zbl 0788.47021
Partner of
EuDML logo