[3] Castro, A.: Metodos variacionales y analisis functional no linear. X Colóquio Colombiano de Matematicas. Monograph published by the Colombian Math. Society, Paipa (1980), Spain.
[4] Chen, J., Cheng, B., Tang, X.: 
New existence of multiple solutions for nonhomogeneous Schrödinger-Kirchhoff problems involving the fractional $p$-Laplacian with sign-changing potential. Rev. Real Acad. Cien. Exact., Fís. Nat., Serie A. Mat. (2016), 1-24. 
DOI 10.1007/s13398-016-0372-5 | 
MR 3742996 
[6] Cheng, K., Gao, Q.: 
Sign-changing solutions for the stationary Kirchhoff problems involving the fractional Laplacian in $\mathbb{R^{N}}$. Avaible at  
https://arxiv.org/abs/1701.03862v1
 
[12] Dreher, M.: 
The Kirchhoff equation for the $p$-Laplacian. Rend. Semin. Mat. Univ. Politec. Torino 64 (2006), 217-238. 
MR 2272915 | 
Zbl 1178.35006 
[13] Goyal, S., Sreenadh, K.: 
Nehari manifold for non-local elliptic operator with concave-convex nonlinearities and sign-changing weight functions. Proc. Indian Acad. Sci., Math. Sci. 125 (2015), 545-558. 
DOI 10.1007/s12044-015-0244-5 | 
MR 3432207 | 
Zbl 1332.35375 
[14] Kavian, O.: 
Introduction à la Théorie des Points Critiques et Applications aux Problèmes Elliptiques. Mathématiques et Applications. Springer, Paris (1993). 
MR 1276944 | 
Zbl 0797.58005 
[15] Krasnoselsk'ii, M. A.: 
Topological Methods in the Theory of Nonlinear Integral Equations. International Series of Monographs on Pure and Applied Mathematics 45. Pergamon Press, Oxford; MacMillan, New York (1964). 
MR 0159197 | 
Zbl 0111.30303 
[16] Bisci, G. Molica, Radulescu, V. D., Servadei, R.: 
Variational Methods for Nonlocal Fractional Problems. Encyclopedia of Mathematics and its Applications 162. Cambridge University Press, Cambridge (2016). 
DOI 10.1017/CBO9781316282397 | 
MR 3445279 | 
Zbl 1356.49003 
[18] Peral, I.: Multiplicity of solutions for the $p$-Laplacian. Second School of Nonlinear Functional Analysis and Applications to Differential Equations, ICTP, Trieste (1997).
[19] Rabinowitz, P. H.: 
Minimax Methods in Critical Point Theory with Applications to Differential Equations. CBMS Regional Conference Series in Mathematics 65. AMS, Providence (1984). 
DOI 10.1090/cbms/065 | 
MR 0845785 | 
Zbl 0609.58002 
[23] Wang, L., Zhang, B.: 
Infinitely many solutions for Schrodinger-Kirchhoff type equations involving the fractional $p$-Laplacian and critical exponent. Electron. J. Differ. Equ. 2016 (2016), Paper No. 339, 18 pages. 
MR 3604784 | 
Zbl 1353.35307 
[24] Zhang, L., Chen, Y.: 
Infinitely many solutions for sublinear indefinite nonlocal elliptic equations perturbed from symmetry. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 151 (2017), 126-144. 
DOI 10.1016/j.na.2016.12.001 | 
MR 3596674 | 
Zbl 06675023