[2] Baumslag G.: 
Topics in Combinatorial Group Theory. Lectures in Mathematics ETH Zürich, Birkhäuser, Basel, 1993. 
MR 1243634[3] Culik K. II, Karhumäki J.: 
On the equality sets for homomorphisms on free monoids with two generators. RAIRO Inform. Théor. 14 (1980), no. 4, 349–369. 
DOI 10.1051/ita/1980140403491 | 
MR 0607436[4] Day J. D., Reidenbach D., Schneider J. C.: 
On the dual post correspondence problem. Internat. J. Found. Comput. Sci. 25 (2014), no. 8, 1033–1048. 
MR 3315805[6] Ehrenfeucht A., Karhumäki J., Rozenberg G.: 
The (generalized) Post correspondence problem with lists consisting of two words is decidable. Theoret. Comput. Sci. 21 (1982), no. 2, 119–144. 
DOI 10.1016/0304-3975(89)90080-7 | 
MR 0677104[7] Ehrenfeucht A., Karhumäki J., Rozenberg G.: 
On binary equality sets and a solution to the test set conjecture in the binary case. J. Algebra 85 (1983), no. 1, 76–85. 
DOI 10.1016/0021-8693(83)90119-9 | 
MR 0723068[8] Hadravová J.: Structure of Equality Sets. PhD. Thesis, Charles University in Prague, Praha, 2015.
[9] Hadravová J., Holub Š.: 
Equation $x^iy^jx^k=u^iv^ju^k$ in words. Language and Automata Theory and Applications, Lecture Notes in Comput. Sci., Springer, Cham, 2015, pp. 414–423. 
MR 3344820[11] Halava V., Holub Š.: 
Binary (Generalized) Post Correspondence Problem is in $P$. TUCS Technical Report, 785, Turku, 2006. 
MR 2081369[12] Holub Š.: 
A unique structure of two-generated binary equality sets. Developments in Language Theory (Ito M., ed.), 6th International Conf., Kyoto, 2002, Lecture Notes in Comput. Sci., 2450, Springer, Berlin, 2003, pp. 245–257. 
MR 2177348 | 
Zbl 1015.68089[14] Holub Š.: Binary equality languages for periodic morphisms. Algebraic Systems, Formal Languages and Conventional and Unconventional Computation Theory, RIMS Kokyuroku, 1366, Kyoto University, 2004, pp. 1880–2818.
[15] Karhumäki J., Maňuch J., Plandowski W.: 
On defect effect of bi-infinite words. Mathematical Foundations of Computer Science, 1998 (Brno), Lecture Notes in Comput. Sci., 1450, Springer, Berlin, 1998, pp. 674–682. 
MR 1684115[16] Lothaire M.: Algebraic Combinatorics on Words. Encyclopedia of Mathematics and Its Applications, 90, Cambridge University Press, Cambridge, 2002.
[18] Maňuch J.: Defect Theorems and Infinite Words. TUCS Dissertations, 41, Turku, 2002.
[20] Rozenberg G., Salomaa A., eds.: 
Handbook of Formal Languages, Vol. 1: Word, Language, Grammar. Springer, New York, 1997. 
MR 1469993[21] Spehner J.-C.: Quelques problèmes d'extension, de conjugaison et de presentation des sous-monoïdes d'un monoïde libre. Thèse, Université Paris VII, Paris, 1976 (French).