[1] Auslender, A.:
Optimisation. Méthodes numériques. Maitrise de mathématiques et applications fondamentales. Masson, Paris French (1976).
MR 0441204 |
Zbl 0326.90057
[2] Censor, Y., Iusem, A. N., Zenios, S. A.:
An interior point method with Bregman functions for the variational inequality problem with paramonotone operators. Math. Program. 81 (1998), 373-400.
DOI 10.1007/BF01580089 |
MR 1617732 |
Zbl 0919.90123
[3] Facchinei, F., Pang, J.-S.:
Finite-Dimensional Variational Inequalities and Complementarity Problems. Vol. I. Springer Series in Operations Research Springer, New York (2003).
DOI 10.1007/b97543 |
MR 1955648 |
Zbl 1062.90001
[4] Facchinei, F., Pang, J.-S.:
Finite-Dimensional Variational Inequalities and Complementarity Problems. Vol. II. Springer Series in Operations Research Springer, New York (2003).
DOI 10.1007/b97544 |
MR 1955649 |
Zbl 1062.90002
[7] Harker, P. T., Pang, J.-S.:
Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications. Math. Program., Ser. B 48 (1990), 161-220.
DOI 10.1007/BF01582255 |
MR 1073707 |
Zbl 0734.90098
[13] Sun, D.-F.:
A projection and contraction method for the nonlinear complementarity problem and its extensions. Chin. J. Numer. Math. Appl. 16 (1994), 73-84 English. Chinese original translation from Math. Numer. Sin. 16 1994 183-194.
MR 1459564 |
Zbl 0900.65188
[15] Ulji, Chen, G.-Q.:
New simple smooth merit function for box constrained variational inequalities and damped Newton type method. Appl. Math. Mech., Engl. Ed. 26 (2005), 1083-1092 Appl. Math. Mech. 26 2005 988-996 Chinese. English, Chinese summary.
DOI 10.1007/BF02466422 |
MR 2169264 |
Zbl 1144.65309
[17] Wang, Y., Zhu, D.:
An affine scaling interior trust region method via optimal path for solving monotone variational inequality problem with linear constraints. Chin. Ann. Math., Ser. B 29 (2008), 273-290.
DOI 10.1007/s11401-007-0082-6 |
MR 2421761 |
Zbl 1151.49025