[1] Alemi, A. A., Bierbaum, M., Myers, C. R., Sethna, J. P.: You can run, you can hide: the epidemiology and statistical mechanics of zombies.  Phys. Rev. E 92:052801 (2015).
[2] Anderson, R. M., May, R. M.: 
The population dynamics of microparasites and their invertebrate hosts.  Philos. Trans. Roy. Soc. London Ser. B 291 (1981), 451–524. 
DOI 10.1098/rstb.1981.0005[4] Berec, L., Janoušková, E., Theuer, M.: 
Sexually transmitted infections and mate-finding Allee effects.  Theoret. Population Biol. 114 (2017), 59–69. 
DOI 10.1016/j.tpb.2016.12.004[5] Bernoulli, D.: Essai d’une nouvelle analyse de la mortalité causée par la petite vérole et des avantages de l’inoculation pour la prévenir.  Mémoires de mathématique et de physique, presentés à l’Académie royale des sciences, 1766.
[8] Coburn, B. J., Wagner, B. G., Blower, S.: 
Modeling influenza epidemics and pandemics: insights into the future of swine flu (H1N1).  BMC Medicine 7 (2009), 30. 
DOI 10.1186/1741-7015-7-30[9] Colizza, V., Barrat, A., Barthelemy, M., Valleron, A.-J., Vespignani, A.: 
Modeling the worldwide spread of pandemic influenza: baseline case and containment interventions.  PLoS Medicine 4 (1) (2007), e13. 
DOI 10.1371/journal.pmed.0040013[10] d’Alembert, J.: Onzième mémoire. Sur l’application du calcul des probabilités à l’inoculation de la petite vérole.  Opuscules mathématiques, tome second. David, Paris, 1761.
[12] Dorigatti, I., Cauchemez, S., Ferguson, N. M.: 
Increased transmissibility explains the third wave of infection by the 2009 H1N1 pandemic virus in England.  Proc. Natl. Acad. Sci. USA 110 (2013), 13422–13427. 
DOI 10.1073/pnas.1303117110[13] Gumel, A. B., Ruan, S., Day, T., Watmough, J., Brauer, F., van den Driessche, P., Gabrielson, D., Bowman, C., Alexander, M. E., Ardal, S., Wu, J., Sahai, B. M.: 
Modelling strategies for controlling SARS outbreaks.  Proc. Roy. Soc. London B 271 (2004), 2223–2232. 
DOI 10.1098/rspb.2004.2800[14] Halloran, M. E., Ferguson, N. M., Eubank, S., Longini, J. I. M., Cummings, D. A. T., Lewis, B., Xu, S., Fraser, C., Vullikanti, A., Germann, T. C., Wagener, D., Beckman, R., Kadau, K., Barrett, C., Macken, C. A., Burke, D. S., Cooley, P.: 
Modeling targeted layered containment of an influenza pandemic in the United States.  Proc. Natl. Acad. Sci. USA 105 (2008), 4639–4644. 
DOI 10.1073/pnas.0706849105[15] Hufnagel, L., Brockmann, D., Geisel, T.: 
Forecast and control of epidemics in a globalized world.  Proc. Natl. Acad. Sci. USA 101 (2004), 15124–15129. 
DOI 10.1073/pnas.0308344101[16] Longini, I. M., Jr., Halloran, M. E., Nizam, A., Yang, Y.: 
Containing pandemic influenza with antiviral agents.  Amer. J. Epidemiol. 159 (2004), 623–633. 
DOI 10.1093/aje/kwh092[17] Longini, I. M., Jr., Nizam, A., Xu, S., Ungchusak, K., Hanshaoworakul, W., Cummings, D. A. T., Halloran, M. E.: 
Containing pandemic influenza at the source.  Science 309 (2005), 1083–1087. 
DOI 10.1126/science.1115717[18] Kermack, W. O., McKendrick, A. G.: 
A contribution to the mathematical theory of epidemics.  Proc. Roy. Soc. London A 115 (1927), 700–721. 
DOI 10.1098/rspa.1927.0118[19] Kermack, W. O., McKendrick, A. G.: 
Contributions to the mathematical theory of epidemics, II. The problem of endemicity.  Proc. Roy. Soc. London A 138 (1932), 55–83. 
DOI 10.1098/rspa.1932.0171[20] Kermack, W. O., McKendrick, A. G.: 
Contributions to the mathematical theory of epidemics, III. Further studies of the problem of endemicity.  Proc. Roy. Soc. London A 141 (1933), 94–122. 
DOI 10.1098/rspa.1933.0106[21] Křivan, V.: Když se matematika potká s biologií: matematická ekologie.  Pokroky Mat. Fyz. Astronom. 62 (3) (2017), 185–201.
[22] Křivan, V., Lewis, M., Bentz, B. J., Bewick, S., Lenhart, S. M., Liebhold, A.: 
A dynamical model for bark beetle outbreaks.  J. Theoret. Biol. 407 (2016), 25–37. 
DOI 10.1016/j.jtbi.2016.07.009 | 
MR 3541907[23] Kucharski, A. J., Camacho, A., Flasche, S., Glover, R. E., Edmunds, W. J., Funk, S.: 
Measuring the impact of Ebola control measures in Sierra Leone.  Proc. Natl. Acad. Sci. USA 112 (2015), 14366–14371. 
DOI 10.1073/pnas.1508814112[24] Mandl, P.: 
Pravděpodobnostní dynamické modely.  Academia, Praha, 1985. 
MR 0819740[25] Riley, S., Fraser, C., Donnelly, C. A., Ghani, A. C., Abu-Raddad, L. J., Hedley, A. J., Leung, G. M., Ho, L.-M., Lam, T.-H., Thach, T. Q., Chau, P., Chan, K.-P., Lo, S.-V., Leung, P.-Y., Tsang, T., Ho, W., Lee, K.-H., Lau, E. M. C., Ferguson, N. M., Anderson, R. M.: 
Transmission dynamics of the etiological agent of SARS in Hong Kong: impact of public health interventions.  Science 300 (2003), 1961–1966. 
DOI 10.1126/science.1086478[27] Wu, J. T., Cowling, B. J.: 
The use of mathematical models to inform influenza pandemic preparedness and response.  Exp. Biol. Medicine 236 (2011), 955–961. 
DOI 10.1258/ebm.2010.010271[28] Wu, J. T., Leung, G. M., Lipsitch, M., Cooper, B. S., Riley, S.: 
Hedging against antiviral resistance during the next influenza pandemic using small stockpiles of an alternative chemotherapy.  PLoS Medicine 6 (5) (2009), e1000085. 
DOI 10.1371/journal.pmed.1000085[29] Xia, Z.-Q., Wang, S.-F., Li, S.-L., Huang, L.-Y., Zhang, W.-Y., Sun, G.-Q., Gai, Z.-T., Jin, Z.: Modeling the transmission dynamics of Ebola virus disease in Liberia.  Sci. Rep. 5 (2015), 13867.