[2] Bar, R., Grahl, J., Nevo, S.: 
Differential inequalities and quasinormal families. Anal. Math. Phys. 4 (2004), 66–71. 
MR 3215192[3] Chuang, C.T.: 
Normal families of meromorphic functions. World Scientific Publishing Co. Pte. Ltd., 1993. 
MR 1249270[4] Dethloff, G., Thai, D.D., Trang, P.N.T.: 
Normal families of meromorphic mappings of several complex variables for moving hypersurfaces in a complex projective space. Nagoya Math. J. 217 (2015), 23–59. 
DOI 10.1215/00277630-2863882 | 
MR 3343838[6] Mai, P.N., Thai, D.D., Trang, P.N.T.: 
Normal families of meromorphic mappings of several complex variables into $¶^N(\mathbb{C})$. Nagoya Math. J. 180 (2005), 91–110. 
DOI 10.1017/S002776300000920X | 
MR 2186670[8] Noguchi, J., Ochiai, T.: 
Introduction to geometric function theory in several complex variables. Transl. Math. Monogr. (1990). 
DOI 10.1090/mmono/080 | 
MR 1084378[10] Pang, X., Nevo, S., Zalcman, L.: 
Quasinormal families of meromorphic functions. Rev. Mat. Iberoamericana 21 (2005), 249–262. 
DOI 10.4171/RMI/422 | 
MR 2155021[11] Quang, S.D.: 
Extension and normality of meromorphic mappings into complex projective varieties. Ann. Polon. Math. 104 (2012), 279–292. 
DOI 10.4064/ap104-3-5 | 
MR 2914536[12] Quang, S.D., Tan, T.V.: 
Normal families of meromorphic mappings of several complex variables into $\mathbb{C}P^n$ for moving hypersurfaces. Ann. Polon. Math. 94 (2008), 97–110. 
DOI 10.4064/ap94-2-1 | 
MR 2438852[14] Thai, D.D., Trang, P.N.T., Huong, P.D.: 
Families of normal maps in several complex variables and hyperbolicity of complex spaces. Complex Var. Elliptic Equ. 48 (2003), 469–482. 
MR 1979525