Previous |  Up |  Next

Article

Title: Some globally determined classes of graphs (English)
Author: Bošnjak, Ivica
Author: Madarász, Rozália
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 68
Issue: 3
Year: 2018
Pages: 633-646
Summary lang: English
.
Category: math
.
Summary: For a class of graphs we say that it is globally determined if any two nonisomorphic graphs from that class have nonisomorphic globals. We will prove that the class of so called CCB graphs and the class of finite forests are globally determined. (English)
Keyword: globals of graphs
Keyword: global determination
Keyword: isomorphism
MSC: 05C25
MSC: 05C60
MSC: 05C76
idZBL: Zbl 06986961
idMR: MR3851880
DOI: 10.21136/CMJ.2018.0552-16
.
Date available: 2018-08-09T13:09:50Z
Last updated: 2020-10-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147357
.
Reference: [1] Baker, K. A., McNulty, G. F., Werner, H.: The finitely based varieties of graph algebras.Acta Sci. Math. 51 (1987), 3-15. Zbl 0629.08003, MR 0911554
Reference: [2] Baumann, U., Pöschel, R., Schmeichel, I.: Power graphs.J. Inf. Process. Cybern. 30 (1994), 135-142. Zbl 0834.05042
Reference: [3] Bošnjak, I., Madarász, R.: On power structures.Algebra Discrete Math. 2003 (2003), 14-35. Zbl 1063.08001, MR 2048654
Reference: [4] Brink, C.: Power structures.Algebra Univers. 30 (1993), 177-216. Zbl 0787.08001, MR 1223628, 10.1007/BF01196091
Reference: [5] Diestel, R.: Graph Theory.Graduate Texts in Mathematics 173 Springer, Berlin (2000). Zbl 0945.05002, MR 1743598, 10.1007/978-3-662-53622-3
Reference: [6] Drápal, A.: Globals of unary algebras.Czech. Math. J. 35 (1985), 52-58. Zbl 0579.08004, MR 0779335
Reference: [7] Goldblatt, R.: Varieties of complex algebras.Ann. Pure Appl. Logic 44 (1989), 173-242. Zbl 0722.08005, MR 1020344, 10.1016/0168-0072(89)90032-8
Reference: [8] Gould, M., Iskra, J. A., Tsinakis, C.: Globals of completely regular periodic semigroups.Semigroup Forum 29 (1984), 365-374. Zbl 0553.20036, MR 0747778, 10.1007/BF02573341
Reference: [9] Herchl, J., Jakubíková-Studenovská, D.: Globals of unary algebras.Soft Comput. 11 (2007), 1107-1112. Zbl 1123.08001, 10.1007/s00500-007-0168-9
Reference: [10] Kobayashi, Y.: Semilattices are globally determined.Semigroup Forum 29 (1984), 217-222. Zbl 0537.20034, MR 0742134, 10.1007/BF02573326
Reference: [11] Korczyński, W.: On a model of concurrent systems.Demonstr. Math. 30 (1997), 809-828. Zbl 0902.68077, MR 1617274, 10.1515/dema-1997-0412
Reference: [12] Korczyński, W.: Petri nets and power graphs---a comparison of two concurrence-models.Demonstr. Math. 31 (1998), 179-192. Zbl 0899.68063, MR 1623839, 10.1515/dema-1998-0123
Reference: [13] Lovász, L.: On the cancellation law among finite relational structures.Period. Math. Hung. 1 (1971), 145-156. Zbl 0223.08002, MR 0284391, 10.1007/BF02029172
Reference: [14] Lukács, E.: Globals of $G$-algebras.Houston J. Math. 13 (1987), 241-244. Zbl 0629.08002, MR 0904955
Reference: [15] McNulty, G. F., Shallon, C. R.: Inherently nonfinitely based finite algebras.Universal Algebra and Lattice Theory R. S. Freese, O. C. Garcia Lecture Notes in Mathematics 1004, Springer, Berlin (1983), 206-231. Zbl 0513.08003, MR 0716184, 10.1007/BFb0063439
Reference: [16] Mogiljanskaja, E. M.: Non-isomorphic semigroups with isomorphic semigroups of subsets.Semigroup Forum 6 (1973), 330-333. Zbl 0267.20059, MR 0390099, 10.1007/BF02389140
Reference: [17] Shallon, C. R.: Non-finitely based binary algebras derived from lattices.Ph.D. Thesis, University of California, Los Angeles (1979). MR 2628364
Reference: [18] Tamura, T.: On the recent results in the study of power semigroups.Semigroups and Their Applications Reidel Publishing Company, Dordrecht (1987), S. M. Goberstein, P. M. Higgins 191-200. Zbl 0623.20044, MR 0900659, 10.1007/978-94-009-3839-7_22
Reference: [19] Whitney, S.: Théories linéaries.Ph.D. Thesis, Université Laval, Québec (1977).
.

Files

Files Size Format View
CzechMathJ_68-2018-3_4.pdf 323.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo