Title:
|
Local superderivations on Lie superalgebra $\mathfrak {q}(n)$ (English) |
Author:
|
Chen, Haixian |
Author:
|
Wang, Ying |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
68 |
Issue:
|
3 |
Year:
|
2018 |
Pages:
|
661-675 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $\mathfrak {q}(n)$ be a simple strange Lie superalgebra over the complex field $\mathbb {C}$. In a paper by A. Ayupov, K. Kudaybergenov (2016), the authors studied the local derivations on semi-simple Lie algebras over $\mathbb {C}$ and showed the difference between the properties of local derivations on semi-simple and nilpotent Lie algebras. We know that Lie superalgebras are a generalization of Lie algebras and the properties of some Lie superalgebras are similar to those of semi-simple Lie algebras, but $\mathfrak {p}(n)$ is an exception. In this paper, we introduce the definition of the local superderivation on $\mathfrak {q}(n)$, give the structures and properties of the local superderivations of $\mathfrak {q}(n)$, and prove that every local superderivation on $\mathfrak {q}(n)$, $n>3$, is a superderivation. (English) |
Keyword:
|
simple Lie superalgebra |
Keyword:
|
superderivation |
Keyword:
|
local superderivation |
MSC:
|
16W55 |
MSC:
|
17B20 |
MSC:
|
17B40 |
idZBL:
|
Zbl 06986964 |
idMR:
|
MR3851883 |
DOI:
|
10.21136/CMJ.2018.0597-16 |
. |
Date available:
|
2018-08-09T13:10:50Z |
Last updated:
|
2020-10-05 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147360 |
. |
Reference:
|
[1] Albeverio, S., Ayupov, S. A., Kudaybergenov, K. K., Nurjanov, B. O.: Local derivations on algebras of measurable operators.Commun. Contemp. Math. 13 (2011), 643-657. Zbl 1230.46056, MR 2826440, 10.1142/S0219199711004270 |
Reference:
|
[2] Alizadeh, R., Bitarafan, M. J.: Local derivations of full matrix rings.Acta Math. Hung. 145 (2015), 433-439. Zbl 1363.17003, MR 3325800, 10.1007/s10474-014-0460-y |
Reference:
|
[3] Ayupov, S., Kudaybergenov, K.: Local derivations on finite-dimensional Lie algebras.Linear Algebra Appl. 493 (2016), 381-398. Zbl 06536636, MR 3452744, 10.1016/j.laa.2015.11.034 |
Reference:
|
[4] Ayupov, S., Kudaybergenov, K., Nurjanov, B., Alauadinov, A.: Local and 2-local derivations on noncommutative Arens algebras.Math. Slovaca 64 (2014), 423-432. Zbl 1349.46071, MR 3201356, 10.2478/s12175-014-0215-9 |
Reference:
|
[5] Kac, V. G.: Lie superalgebras.Adv. Math. 26 (1977), 8-96. Zbl 0366.17012, MR 0486011, 10.1016/0001-8708(77)90017-2 |
Reference:
|
[6] Kadison, R. V.: Local derivations.J. Algebra 130 (1990), 494-509. Zbl 0751.46041, MR 1051316, 10.1016/0021-8693(90)90095-6 |
Reference:
|
[7] Mukhamedov, F., Kudaybergenov, K.: Local derivations on subalgebras of $\tau$-measurable operators with respect to semi-finite von Neumann algebras.Mediterr. J. Math. 12 (2015), 1009-1017. Zbl 1321.47089, MR 3376827, 10.1007/s00009-014-0447-5 |
Reference:
|
[8] Musson, I. M.: Lie Superalgebras and Enveloping Algebras.Graduate Studies in Mathematics 131, American Mathematical Society, Providence (2012). Zbl 1255.17001, MR 2906817, 10.1090/gsm/131 |
Reference:
|
[9] Nowicki, A., Nowosad, I.: Local derivations of subrings of matrix rings.Acta Math. Hung. 105 (2004), 145-150. Zbl 1070.16035, MR 2093937, 10.1023/B:AMHU.0000045539.32024.db |
Reference:
|
[10] Scheunert, M.: The Theory of Lie Superalgebras. An Introduction.Lecture Notes in Mathematics 716, Springer, Berlin (1979). Zbl 0407.17001, MR 0537441, 10.1007/bfb0070929 |
Reference:
|
[11] Zhang, J.-H., Ji, G.-X., Cao, H.-X.: Local derivations of nest subalgebras of von Neumann algebras.Linear Algebra Appl. 392 (2004), 61-69. Zbl 1067.46063, MR 2095907, 10.1016/j.laa.2004.05.015 |
. |