Previous |  Up |  Next

Article

Title: Local superderivations on Lie superalgebra $\mathfrak {q}(n)$ (English)
Author: Chen, Haixian
Author: Wang, Ying
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 68
Issue: 3
Year: 2018
Pages: 661-675
Summary lang: English
.
Category: math
.
Summary: Let $\mathfrak {q}(n)$ be a simple strange Lie superalgebra over the complex field $\mathbb {C}$. In a paper by A. Ayupov, K. Kudaybergenov (2016), the authors studied the local derivations on semi-simple Lie algebras over $\mathbb {C}$ and showed the difference between the properties of local derivations on semi-simple and nilpotent Lie algebras. We know that Lie superalgebras are a generalization of Lie algebras and the properties of some Lie superalgebras are similar to those of semi-simple Lie algebras, but $\mathfrak {p}(n)$ is an exception. In this paper, we introduce the definition of the local superderivation on $\mathfrak {q}(n)$, give the structures and properties of the local superderivations of $\mathfrak {q}(n)$, and prove that every local superderivation on $\mathfrak {q}(n)$, $n>3$, is a superderivation. (English)
Keyword: simple Lie superalgebra
Keyword: superderivation
Keyword: local superderivation
MSC: 16W55
MSC: 17B20
MSC: 17B40
idZBL: Zbl 06986964
idMR: MR3851883
DOI: 10.21136/CMJ.2018.0597-16
.
Date available: 2018-08-09T13:10:50Z
Last updated: 2020-10-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147360
.
Reference: [1] Albeverio, S., Ayupov, S. A., Kudaybergenov, K. K., Nurjanov, B. O.: Local derivations on algebras of measurable operators.Commun. Contemp. Math. 13 (2011), 643-657. Zbl 1230.46056, MR 2826440, 10.1142/S0219199711004270
Reference: [2] Alizadeh, R., Bitarafan, M. J.: Local derivations of full matrix rings.Acta Math. Hung. 145 (2015), 433-439. Zbl 1363.17003, MR 3325800, 10.1007/s10474-014-0460-y
Reference: [3] Ayupov, S., Kudaybergenov, K.: Local derivations on finite-dimensional Lie algebras.Linear Algebra Appl. 493 (2016), 381-398. Zbl 06536636, MR 3452744, 10.1016/j.laa.2015.11.034
Reference: [4] Ayupov, S., Kudaybergenov, K., Nurjanov, B., Alauadinov, A.: Local and 2-local derivations on noncommutative Arens algebras.Math. Slovaca 64 (2014), 423-432. Zbl 1349.46071, MR 3201356, 10.2478/s12175-014-0215-9
Reference: [5] Kac, V. G.: Lie superalgebras.Adv. Math. 26 (1977), 8-96. Zbl 0366.17012, MR 0486011, 10.1016/0001-8708(77)90017-2
Reference: [6] Kadison, R. V.: Local derivations.J. Algebra 130 (1990), 494-509. Zbl 0751.46041, MR 1051316, 10.1016/0021-8693(90)90095-6
Reference: [7] Mukhamedov, F., Kudaybergenov, K.: Local derivations on subalgebras of $\tau$-measurable operators with respect to semi-finite von Neumann algebras.Mediterr. J. Math. 12 (2015), 1009-1017. Zbl 1321.47089, MR 3376827, 10.1007/s00009-014-0447-5
Reference: [8] Musson, I. M.: Lie Superalgebras and Enveloping Algebras.Graduate Studies in Mathematics 131, American Mathematical Society, Providence (2012). Zbl 1255.17001, MR 2906817, 10.1090/gsm/131
Reference: [9] Nowicki, A., Nowosad, I.: Local derivations of subrings of matrix rings.Acta Math. Hung. 105 (2004), 145-150. Zbl 1070.16035, MR 2093937, 10.1023/B:AMHU.0000045539.32024.db
Reference: [10] Scheunert, M.: The Theory of Lie Superalgebras. An Introduction.Lecture Notes in Mathematics 716, Springer, Berlin (1979). Zbl 0407.17001, MR 0537441, 10.1007/bfb0070929
Reference: [11] Zhang, J.-H., Ji, G.-X., Cao, H.-X.: Local derivations of nest subalgebras of von Neumann algebras.Linear Algebra Appl. 392 (2004), 61-69. Zbl 1067.46063, MR 2095907, 10.1016/j.laa.2004.05.015
.

Files

Files Size Format View
CzechMathJ_68-2018-3_7.pdf 315.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo