Previous |  Up |  Next

Article

Title: Integral averaging technique for oscillation of damped half-linear oscillators (English)
Author: Enaka, Yukihide
Author: Onitsuka, Masakazu
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 68
Issue: 3
Year: 2018
Pages: 755-770
Summary lang: English
.
Category: math
.
Summary: This paper is concerned with the oscillatory behavior of the damped half-linear oscillator $(a(t)\phi _p(x'))'+b(t)\phi _p(x')+c(t)\phi _p(x) = 0$, where $\phi _p(x) = |x|^{p-1}\mathop {\rm sgn} x$ for $x \in \mathbb {R}$ and $p > 1$. A sufficient condition is established for oscillation of all nontrivial solutions of the damped half-linear oscillator under the integral averaging conditions. The main result can be given by using a generalized Young's inequality and the Riccati type technique. Some examples are included to illustrate the result. Especially, an example which asserts that all nontrivial solutions are oscillatory if and only if $p \neq 2$ is presented. (English)
Keyword: damped half-linear oscillator
Keyword: integral averaging technique
Keyword: Riccati technique
Keyword: generalized Young inequality
Keyword: oscillatory solution
MSC: 34C10
MSC: 34C15
idZBL: Zbl 06986970
idMR: MR3851889
DOI: 10.21136/CMJ.2018.0645-16
.
Date available: 2018-08-09T13:13:28Z
Last updated: 2020-10-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147366
.
Reference: [1] Agarwal, R. P., Grace, S. R., O'Regan, D.: Oscillation Theory for Second Order Linear, Half-Linear, Superlinear and Sublinear Dynamic Equations.Kluwer Academic Publishers, Dordrecht (2002). Zbl 1073.34002, MR 2091751, 10.1007/978-94-017-2515-6
Reference: [2] Çakmak, D.: Integral averaging technique for the interval oscillation criteria of certain second-order nonlinear differential equations.J. Math. Anal. Appl. 300 (2004), 408-425. Zbl 1082.34030, MR 2098218, 10.1016/j.jmaa.2004.06.046
Reference: [3] Cecchi, M., Došlá, Z., Došlý, O., Marini, M.: On the integral characterization of principal solutions for half-linear ODE.Electron. J. Qual. Theory Differ. Equ. 2013 (2013), Paper No. 12, 14 pages. Zbl 1340.34125, MR 3019662, 10.14232/ejqtde.2013.1.12
Reference: [4] Coles, W. J.: A simple proof of a well-known oscillation theorem.Proc. Am. Math. Soc. 19 (1968), 507. Zbl 0155.12802, MR 0223644, 10.2307/2035563
Reference: [5] Coppel, W. A.: Disconjugacy.Lecture Notes in Mathematics 220, Springer, Berlin (1971). Zbl 0224.34003, MR 0460785, 10.1007/BFb0058618
Reference: [6] Došlý, O.: Half-linear differential equations.Handbook of Differential Equations: Ordinary Differential Equations. Vol. I. Elsevier/North-Holland, Amsterdam (2004), 161-357 A. Cañada et al. Zbl 1090.34027, MR 2166491
Reference: [7] Došlý, O., Řehák, P.: Half-Linear Differential Equations.North-Holland Mathematics Studies 202, Elsevier Science, Amsterdam (2005). Zbl 1090.34001, MR 2158903, 10.1016/S0304-0208(13)72439-3
Reference: [8] Fišnarová, S., Mařík, R.: On constants in nonoscillation criteria for half-linear differential equations.Abstr. Appl. Anal. 2011 (2011), Article ID 638271, 15 pages. Zbl 1232.34052, MR 2846243, 10.1155/2011/638271
Reference: [9] Grace, S. R., Lalli, B. S.: Integral averaging and the oscillation of second order nonlinear differential equations.Ann. Mat. Pura Appl., IV. Ser. 151 (1988), 149-159. Zbl 0648.34039, MR 0964507, 10.1007/BF01762792
Reference: [10] Grace, S. R., Lalli, B. S.: Integral averaging techniques for the oscillation of second order nonlinear differential equations.J. Math. Anal. Appl. 149 (1990), 277-311. Zbl 0697.34040, MR 1054809, 10.1016/0022-247X(90)90301-U
Reference: [11] Hartman, P.: Ordinary Differential Equations.John Wiley and Sons, New York (1964). Zbl 0125.32102, MR 0171038
Reference: [12] Hasil, P., Veselý, M.: Conditional oscillation of Riemann-Weber half-linear differential equations with asymptotically almost periodic coefficients.Stud. Sci. Math. Hung. 51 (2014), 303-321. Zbl 1340.34127, MR 3254918, 10.1556/SScMath.51.2014.3.1283
Reference: [13] Hasil, P., Veselý, M.: Non-oscillation of perturbed half-linear differential equations with sums of periodic coefficients.Adv. Difference Equ. 2015 (2015), Article No. 190, 17 pages. MR 3358100, 10.1186/s13662-015-0533-4
Reference: [14] Hata, S., Sugie, J.: A necessary and sufficient condition for the global asymptotic stability of damped half-linear oscillators.Acta Math. Hung. 138 (2013), 156-172. Zbl 1299.34193, MR 3015969, 10.1007/s10474-012-0259-7
Reference: [15] Kamenev, I. V.: An integral criterion for oscillation of linear differential equations of second order.Math. Notes 23 (1978), 136-138. English. Russian original translation from Mat. Zametki 23 1978 249-251. Zbl 0408.34031, MR 0486798, 10.1007/BF01153154
Reference: [16] Li, T., Rogovchenko, Y. V., Tang, S.: Oscillation of second-order nonlinear differential equations with damping.Math. Slovaca 64 (2014), 1227-1236. Zbl 1349.34111, MR 3277849, 10.2478/s12175-014-0271-1
Reference: [17] Mirzov, J. D.: Asymptotic Properties of Solutions of Systems of Nonlinear Nonautonomous Ordinary Differential Equations.Folia Facultatis Scientiarum Naturalium Universitatis Masarykianae Brunensis. Mathematica 14, Masaryk University, Brno 14 (2004). Zbl 1154.34300, MR 2144761
Reference: [18] Onitsuka, M., Soeda, T.: Uniform asymptotic stability implies exponential stability for nonautonomous half-linear differential systems.Adv. Difference Equ. 2015 (2015), Article No. 158, 24 pages. MR 3359784, 10.1186/s13662-015-0494-7
Reference: [19] Onitsuka, M., Sugie, J.: Uniform global asymptotic stability for half-linear differential systems with time-varying coefficients.Proc. R. Soc. Edinb., Sect. A, Math. 141 (2011), 1083-1101. Zbl 1232.34081, MR 2838369, 10.1017/S0308210510000326
Reference: [20] Onitsuka, M., Tanaka, S.: Characteristic equation for autonomous planar half-linear differential systems.Acta Math. Hung. 152 (2017), 336-364. Zbl 06806136, MR 3682888, 10.1007/s10474-017-0722-6
Reference: [21] Pašić, M.: Fite-Wintner-Leighton-type oscillation criteria for second-order differential equations with nonlinear damping.Abstr. Appl. Anal. 2013 (2013), Article ID 852180, 10 pages. Zbl 1308.34043, MR 3034985, 10.1155/2013/852180
Reference: [22] Řehák, P.: A Riccati technique for proving oscillation of a half-linear equation.Electron. J. Differ. Equ. 2008 (2008), Article No. 105, 8 pages. Zbl 1170.34317, MR 2430902
Reference: [23] Řehák, P.: Comparison of nonlinearities in oscillation theory of half-linear differential equations.Acta Math. Hung. 121 (2008), 93-105. Zbl 1199.34167, MR 2463252, 10.1007/s10474-008-7181-z
Reference: [24] Řehák, P.: Exponential estimates for solutions of half-linear differential equations.Acta Math. Hung. 147 (2015), 158-171. Zbl 1374.34102, MR 3391519, 10.1007/s10474-015-0522-9
Reference: [25] Sugie, J.: Global asymptotic stability for damped half-linear oscillators.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 74 (2011), 7151-7167. Zbl 1243.34073, MR 2833701, 10.1016/j.na.2011.07.028
Reference: [26] Sugie, J., Matsumura, K.: A nonoscillation theorem for half-linear differential equations with periodic coefficients.Appl. Math. Comput. 199 (2008), 447-455. Zbl 1217.34056, MR 2420574, 10.1016/j.amc.2007.10.007
Reference: [27] Sugie, J., Onitsuka, M.: Global asymptotic stability for damped half-linear differential equations.Acta Sci. Math. 73 (2007), 613-636. Zbl 1265.34199, MR 2380068
Reference: [28] Sugie, J., Onitsuka, M.: Growth conditions for uniform asymptotic stability of damped oscillators.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 98 (2014), 83-103. Zbl 1291.34096, MR 3158447, 10.1016/j.na.2013.12.005
Reference: [29] Swanson, C. A.: Comparison and Oscillation Theory of Linear Differential Equations.Mathematics in Science and Engineering 48. Academic Press, New York (1968). Zbl 0191.09904, MR 0463570, 10.1016/s0076-5392(08)x6131-4
Reference: [30] Tiryaki, A.: Oscillation criteria for a certain second-order nonlinear differential equations with deviating arguments.Electron. J. Qual. Theory Differ. Equ. 2009 (2009), Article No. 61, 11 pages. Zbl 1195.34100, MR 2558636, 10.14232/ejqtde.2009.1.61
Reference: [31] Tiryaki, A., Çakmak, D., Ayanlar, B.: On the oscillation of certain second-order nonlinear differential equations.J. Math. Anal. Appl. 281 (2003), 565-574. Zbl 1030.34033, MR 1982674, 10.1016/S0022-247X(03)00145-8
Reference: [32] Tunç, E., Avcı, H.: New oscillation theorems for a class of second-order damped nonlinear differential equations.Ukr. Math. J. 63 (2012), 1441-1457. English. Russian original translation from Ukr. Mat. Zh. 63 2011 1263-1278. Zbl 1256.34023, MR 3109665, 10.1007/s11253-012-0590-8
Reference: [33] Wintner, A.: A criterion of oscillatory stability.Q. Appl. Math. 7 (1949), 115-117. Zbl 0032.34801, MR 0028499, 10.1090/qam/28499
Reference: [34] Wong, J. S. W.: On Kamenev-type oscillation theorems for second-order differential equations with damping.J. Math. Anal. Appl. 258 (2001), 244-257. Zbl 0987.34024, MR 1828103, 10.1006/jmaa.2000.7376
Reference: [35] Yamaoka, N.: Oscillation criteria for second-order damped nonlinear differential equations with {$p$}-Laplacian.J. Math. Anal. Appl. 325 (2007), 932-948. Zbl 1108.34027, MR 2270061, 10.1016/j.jmaa.2006.02.021
Reference: [36] Zhang, Q., Wang, L.: Oscillatory behavior of solutions for a class of second order nonlinear differential equation with perturbation.Acta Appl. Math. 110 (2010), 885-893. Zbl 1197.34050, MR 2610598, 10.1007/s10440-009-9483-8
Reference: [37] Zheng, W., Sugie, J.: Parameter diagram for global asymptotic stability of damped half-linear oscillators.Monatsh. Math. 179 (2016), 149-160. Zbl 1344.34066, MR 3439277, 10.1007/s00605-014-0695-2
Reference: [38] Zheng, Z.: Note on Wong's paper.J. Math. Anal. Appl. 274 (2002), 466-473. Zbl 1025.34030, MR 1936709, 10.1016/S0022-247X(02)00297-4
.

Files

Files Size Format View
CzechMathJ_68-2018-3_13.pdf 326.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo