Previous |  Up |  Next

Article

Title: On linear preservers of two-sided gut-majorization on ${\bf M}_{n,m}$ (English)
Author: Ilkhanizadeh Manesh, Asma
Author: Mohammadhasani, Ahmad
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 68
Issue: 3
Year: 2018
Pages: 791-801
Summary lang: English
.
Category: math
.
Summary: For $X,Y \in {\bf M}_{n,m}$ it is said that $X$ is gut-majorized by $Y$, and we write $ X\prec _{\rm gut} Y$, if there exists an $n$-by-$n$ upper triangular g-row stochastic matrix $R$ such that $X=RY$. Define the relation $\sim _{\rm gut}$ as follows. $X\sim _{\rm gut}Y$ if $X$ is gut-majorized by $Y$ and $Y$ is gut-majorized by $X$. The (strong) linear preservers of $\prec _{\rm gut}$ on $\mathbb {R}^{n}$ and strong linear preservers of this relation on ${\bf M}_{n,m}$ have been characterized before. This paper characterizes all (strong) linear preservers and strong linear preservers of $\sim _{\rm gut}$ on $\mathbb {R}^{n}$ and ${\bf M}_{n,m}$. (English)
Keyword: g-row stochastic matrix
Keyword: gut-majorization
Keyword: linear preserver
Keyword: strong linear preserver
Keyword: two-sided gut-majorization
MSC: 15A04
MSC: 15A21
idZBL: Zbl 06986972
idMR: MR3851891
DOI: 10.21136/CMJ.2018.0648-16
.
Date available: 2018-08-09T13:14:15Z
Last updated: 2020-10-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147368
.
Reference: [1] Armandnejad, A., Manesh, A. Ilkhanizadeh: GUT-majorization and its linear preservers.Electron. J. Linear Algebra 23 (2012), 646-654. Zbl 1253.15040, MR 2966796, 10.13001/1081-3810.1547
Reference: [2] Brualdi, R. A., Dahl, G.: An extension of the polytope of doubly stochastic matrices.Linear Multilinear Algebra 61 (2013), 393-408. Zbl 1269.15034, MR 3003432, 10.1080/03081087.2012.689980
Reference: [3] Hasani, A. M., Radjabalipour, M.: The structure of linear operators strongly preserving majorizations of matrices.Electron. J. Linear Algebra 15 (2006), 260-268. Zbl 1145.15003, MR 2255479, 10.13001/1081-3810.1236
Reference: [4] Hasani, A. M., Radjabalipour, M.: On linear preservers of (right) matrix majorization.Linear Algebra Appl. 423 (2007), 255-261. Zbl 1120.15004, MR 2312405, 10.1016/j.laa.2006.12.016
Reference: [5] Manesh, A. Ilkhanizadeh: On linear preservers of sgut-majorization on $M_{n,m}$.Bull. Iran. Math. Soc. 42 (2016), 471-481. Zbl 1373.15043, MR 3498168
Reference: [6] Manesh, A. Ilkhanizadeh: Right gut-majorization on $M_{n,m}$.Electron. J. Linear Algebra 31 (2016), 13-26. Zbl 1332.15011, MR 3484660, 10.13001/1081-3810.3235
Reference: [7] Manesh, A. Ilkhanizadeh, Armandnejad, A.: Ut-majorization on ${\Bbb R}^n$ and its linear preservers.Operator Theory, Operator Algebras and Applications M. Bastos Operator Theory: Advances and Applications 242, Birkhäuser, Basel (2014), 253-259. Zbl 1318.15016, MR 3243295, 10.1007/978-3-0348-0816-3_15
Reference: [8] Li, C. K., Poon, E.: Linear operators preserving directional majorization.Linear Algebra Appl. 235 (2001), 141-149. Zbl 0999.15030, MR 1810100, 10.1016/S0024-3795(00)00328-1
Reference: [9] Motlaghian, S. M., Armandnejad, A., Hall, F. J.: Linear preservers of row-dense matrices.Czech. Math. J. 66 (2016), 847-858. Zbl 06644037, MR 3556871, 10.1007/s10587-016-0296-4
Reference: [10] Niezgoda, M.: Cone orderings, group majorizations and similarly separable vectors.Linear Algebra Appl. 436 (2012), 579-594. Zbl 1244.26047, MR 2854893, 10.1016/j.laa.2011.07.013
.

Files

Files Size Format View
CzechMathJ_68-2018-3_15.pdf 291.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo