Previous |  Up |  Next

Article

Title: Entropy solutions to parabolic equations in Musielak framework involving non coercivity term in divergence form (English)
Author: Elemine Vall, Mohamed Saad Bouh
Author: Ahmed, Ahmed
Author: Touzani, Abdelfattah
Author: Benkirane, Abdelmoujib
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 143
Issue: 3
Year: 2018
Pages: 225-249
Summary lang: English
.
Category: math
.
Summary: We prove the existence of solutions to nonlinear parabolic problems of the following type: $$ \begin {cases} \dfrac {\partial b(u)}{\partial t}+ A(u) = f + {\rm div}(\Theta (x; t; u))& \text {in}\ Q,\\ u(x; t) = 0 & \text {on}\ \partial \Omega \times [0; T],\\ b(u)(t = 0) = b(u_0) & \text {on}\ \Omega , \end {cases} $$ where $b\colon \Bbb {R}\to \Bbb {R}$ is a strictly increasing function of class ${\mathcal C}^1$, the term $$ A(u) = -{\rm div} (a(x, t, u,\nabla u)) $$ is an operator of Leray-Lions type which satisfies the classical Leray-Lions assumptions of Musielak type, $\Theta \colon \Omega \times [0; T]\times \Bbb {R}\to \Bbb {R}$ is a Carathéodory, noncoercive function which satisfies the following condition: $\sup _{|s|\le k} |\Theta ({\cdot },{\cdot },s)| \in E_{\psi }(Q)$ for all $k > 0$, where $\psi $ is the Musielak complementary function of $\Theta $, and the second term $f$ belongs to $L^{1}(Q)$. (English)
Keyword: inhomogeneous Musielak-Orlicz-Sobolev space
Keyword: parabolic problems
Keyword: Galerkin method
MSC: 58J35
MSC: 65L60
idZBL: Zbl 06940882
idMR: MR3852293
DOI: 10.21136/MB.2017.0087-16
.
Date available: 2018-08-31T09:41:55Z
Last updated: 2020-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/147390
.
Reference: [1] Aberqi, A., Bennouna, J., Mekkour, M., Redwane, H.: Existence results for a nonlinear parabolic problems with lower order terms.Int. J. Math. Anal., Ruse 7 (2013), 1323-1340. Zbl 1284.35216, MR 3053336, 10.12988/ijma.2013.13130
Reference: [2] Oubeid, M. L. Ahmed, Benkirane, A., Vally, M. Sidi El: Nonlinear elliptic equations involving measure data in Musielak-Orlicz-Sobolev spaces.J. Abstr. Differ. Equ. Appl. 4 (2013), 43-57. Zbl 1330.35136, MR 3064138
Reference: [3] Oubeid, M. L. Ahmed, Benkirane, A., Vally, M. Sidi El: Parabolic equations in Musielak-Orlicz-Sobolev spaces.Int. J. Anal. Appl. 4 (2014), 174-191. Zbl 06657910, MR 3064138
Reference: [4] Oubeid, M. L. Ahmed, Benkirane, A., Vally, M. Sidi El: Strongly nonlinear parabolic problems in Musielak-Orlicz-Sobolev spaces.Bol. Soc. Paran. Mat. (3) 33 (2015), 193-223. MR 3267308
Reference: [5] Khellou, M. Ait, Benkirane, A., Douiri, S. M.: Existance of solutions for elliptic equations having naturel growth terms in Musielak-Orlicz spaces.J. Math. Comput. Sci. 4 (2014), 665-688.
Reference: [6] Azroul, E., Benboubker, M. B., Redwane, H., Yazough, C.: Renormalized solutions for a class of nonlinear parabolic equations without sign condition involving nonstandard growth.An. Univ. Craiova, Ser. Mat. Inf. 41 (2014), 69-87. Zbl 1324.35064, MR 3234476
Reference: [7] Azroul, E., Lekhlifi, M. El, Redwane, H., Touzani, A.: Entropy solutions of nonlinear parabolic equations in Orlicz-Sobolev spaces, without sign condition and $L^1$ data.J. Nonlinear Evol. Equ. Appl. 2014 (2014), 101-130. Zbl 1327.35217, MR 3322158
Reference: [8] Azroul, E., Hjiaj, H., Touzani, A.: Existence and regularity of entropy solutions for strongly nonlinear $p(x)$-elliptic equations.Electron. J. Differ. Equ. 2013 (2013), Paper No. 68, 27 pages. Zbl 1291.35044, MR 3040645
Reference: [9] Bénilan, P., Boccardo, L., Gallouët, T., Gariepy, R., Pierre, M., Vazquez, J. L.: An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations.Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 22 (1995), 241-273. Zbl 0866.35037, MR 1354907
Reference: [10] Benkirane, A., Val, M. Ould Mohamedhen: Some approximation properties in Musielak-Orlicz-Sobolev spaces.Thai. J. Math. 10 (2012), 371-381. Zbl 1264.46024, MR 3001860
Reference: [11] Benkirane, A., Vally, M. Sidi El: Variational inequalities in Musielak-Orlicz-Sobolev spaces.Bull. Belg. Math. Soc.-Simon Stevin 21 (2014), 787-811. Zbl 1326.35142, MR 3298478, 10.36045/bbms/1420071854
Reference: [12] Vall, M. S. B. Elemine, Ahmed, A., Touzani, A., Benkirane, A.: Existence of entropy solutions for nonlinear elliptic equations in Musielak framework with $L^1$ data.Bol. Soc. Paran. Math. (3) 36 (2018), 125-150. MR 3632476, 10.5269/bspm.v36i1.29440
Reference: [13] Elmahi, A., Meskine, D.: Parabolic equations in Orlicz spaces.J. Lond. Math. Soc., II. Ser. 72 (2005), 410-428. Zbl 1108.35082, MR 2156661, 10.1112/S0024610705006630
Reference: [14] Elmahi, A., Meskine, D.: Strongly nonlinear parabolic equations with natural growth terms in Orlicz spaces.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 60 (2005), 1-35. Zbl 1082.35085, MR 2101516, 10.1016/j.na.2004.08.018
Reference: [15] Gossez, J. P.: Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients.Trans. Am. Math. Soc. 190 (1974), 163-205. Zbl 0239.35045, MR 0342854, 10.2307/1996957
Reference: [16] Nassar, S. Hadj, Moussa, H., Rhoudaf, M.: Renormalized solution for a nonlinear parabolic problems with noncoercivity in divergence form in Orlicz spaces.Appl. Math. Comput. 249 (2014), 253-264. Zbl 1338.35257, MR 3279419, 10.1016/j.amc.2014.10.026
Reference: [17] Landes, R., Mustonen, V.: A strongly nonlinear parabolic initial boundary value problem.Ark. Mat. 25 (1987), 29-40. Zbl 0697.35071, MR 0918378, 10.1007/BF02384435
Reference: [18] Musielak, J.: Orlicz Spaces and Modular Spaces.Lecture Notes in Math. 1034. Springer, Berlin (1983). Zbl 0557.46020, MR 0724434, 10.1007/BFb0072210
Reference: [19] Redwane, H.: Existence of a solution for a class of parabolic equations with three unbounded nonlinearities.Adv. Dyn. Syst. Appl. 2 (2007), 241-264. MR 2489045
Reference: [20] Redwane, H.: Existence results for a class of nonlinear parabolic equations in Orlicz spaces.Electron. J. Qual. Theory Differ. Equ. 2010 (2010), Paper No. 2, 19 pages. Zbl 1192.35103, MR 2577155, 10.14232/ejqtde.2010.1.2
Reference: [21] Vally, M. Sidi El: Strongly nonlinear elliptic problems in Musielak-Orlicz-Sobolev spaces.Adv. Dyn. Syst. Appl. 8 (2013), 115-124. MR 3071548
.

Files

Files Size Format View
MathBohem_143-2018-3_1.pdf 372.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo