Previous |  Up |  Next

Article

Title: Norm continuity of pointwise quasi-continuous mappings (English)
Author: Mirmostafaee, Alireza Kamel
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 143
Issue: 3
Year: 2018
Pages: 329-335
Summary lang: English
.
Category: math
.
Summary: Let $X$ be a Baire space, $Y$ be a compact Hausdorff space and $\varphi \colon X \to C_p(Y )$ be a quasi-continuous mapping. For a proximal subset $H$ of $Y \times Y$ we will use topological games $\mathcal {G}_1(H)$ and $\mathcal {G}_2(H)$ on $Y \times Y$ between two players to prove that if the first player has a winning strategy in these games, then $\varphi $ is norm continuous on a dense $G_\delta $ subset of $X$. It follows that if $Y$ is Valdivia compact, each quasi-continuous mapping from a Baire space $X$ to $C_p(Y)$ is norm continuous on a dense $G_\delta $ subset of $X$. (English)
Keyword: function space
Keyword: weak continuity
Keyword: generalized continuity
Keyword: quasi-continuous function
Keyword: pointwise topology
MSC: 54C05
MSC: 54C08
MSC: 54C35
idZBL: Zbl 06940886
idMR: MR3852297
DOI: 10.21136/MB.2018.0016-17
.
Date available: 2018-08-31T09:44:55Z
Last updated: 2020-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/147391
.
Reference: [1] Angosto, C., Cascales, B., Namioka, I.: Distances to spaces of Baire one functions.Math. Z. 263 (2009), 103-124. Zbl 1173.54007, MR 2529490, 10.1007/s00209-008-0412-8
Reference: [2] Bouziad, A.: L'espace de Helly a la propriété de Namioka.C. R. Acad. Sci., Paris, Sér. I 317 (1993), 841-843 French. Zbl 0798.54039, MR 1246650
Reference: [3] Bouziad, A.: Every Čech-analytic Baire semitopological group is a topological group.Proc. Am. Math. Soc. 124 (1996), 953-959. Zbl 0857.22001, MR 1328341, 10.1090/S0002-9939-96-03384-9
Reference: [4] Choquet, G.: Lectures on Analysis. Vol. 1: Integration and Topological Vector Spaces.Mathematics Lecture Note Series. W. A. Benjamin Inc., New-York (1969). Zbl 0181.39601, MR 0250011
Reference: [5] Christensen, J. P. R.: Joint continuity of separately continuous functions.Proc. Am. Math. Soc. 82 (1981), 455-461. Zbl 0472.54007, MR 0612739, 10.2307/2043960
Reference: [6] Debs, G.: Pointwise and uniform convergence on a Corson compact space.Topology Appl. 23 (1986), 299-303. Zbl 0613.54007, MR 0858338, 10.1016/0166-8641(85)90047-1
Reference: [7] Deville, R.: Point convergence and uniform convergence on a compact space.Bull. Pol. Acad. Sci., Math. 37 (1989), 507-515 French. Zbl 0759.54002, MR 1101913
Reference: [8] Deville, R., Godefroy, G.: Some applications of projective resolutions of identity.Proc. Lond. Math. Soc., III. Ser. 67 (1993), 183-199. Zbl 0798.46008, MR 1218125, 10.1112/plms/s3-67.1.183
Reference: [9] Hansel, G., Troallic, J.-P.: Quasicontinuity and Namioka's theorem.Topology Appl. 46 (1992), 135-149. Zbl 0812.54019, MR 1184113, 10.1016/0166-8641(92)90129-N
Reference: [10] Haydon, R.: Baire trees, bad norms and the Namioka property.Mathematika 42 (1995), 30-42. Zbl 0870.46008, MR 1346669, 10.1112/S0025579300011323
Reference: [11] Kenderov, P. S., Kortezov, I. S., Moors, W. B.: Norm continuity of weakly continuous mappings into Banach spaces.Topology Appl. 153 (2006), 2745-2759. Zbl 1100.54014, MR 2243747, 10.1016/j.topol.2005.11.007
Reference: [12] Mirmostafaee, A. K.: Norm continuity of quasi-continuous mappings into {$C_p(X)$} and product spaces.Topology Appl. 157 (2010), 530-535. Zbl 1190.54010, MR 2577486, 10.1016/j.topol.2009.10.010
Reference: [13] Mirmostafaee, A. K.: Quasi-continuity of horizontally quasi-continuous functions.Real Anal. Exch. 39 (2013-2014), 335-344. Zbl 1322.54009, MR 3365378, 10.14321/realanalexch.39.2.0335
Reference: [14] Mirmostafaee, A. K.: Continuity of separately continuous mappings.Math. Slovaca 64 (2014), 1019-1026. Zbl 1349.54034, MR 3255869, 10.2478/s12175-014-0255-1
Reference: [15] Namioka, I.: Separate continuity and joint continuity.Pac. J. Math. 51 (1974), 515-531. Zbl 0294.54010, MR 0370466, 10.2140/pjm.1974.51.515
Reference: [16] Oxtoby, J. C.: Measure and Category. A Survey of the Analogies between Topological and Measure Spaces.Graduate Texts in Mathematics 2. Springer, New York (1971). Zbl 0217.09201, MR 0393403, 10.1007/978-1-4615-9964-7
Reference: [17] Talagrand, M.: Espaces de Baire et espaces de Namioka.Math. Ann. 270 (1985), 159-164 French. Zbl 0582.54008, MR 0771977, 10.1007/BF01456180
.

Files

Files Size Format View
MathBohem_143-2018-3_5.pdf 268.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo