Previous |  Up |  Next

Article

Title: Robust sampled-data observer design for Lipschitz nonlinear systems (English)
Author: Yu, Yu
Author: Shen, Yanjun
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 54
Issue: 4
Year: 2018
Pages: 699-717
Summary lang: English
.
Category: math
.
Summary: In this paper, a robust sampled-data observer is proposed for Lipschitz nonlinear systems. Under the minimum-phase condition, it is shown that there always exists a sampling period such that the estimation errors converge to zero for whatever large Lipschitz constant. The optimal sampling period can also be achieved by solving an optimal problem based on linear matrix inequalities (LMIs). The design methods are extended to Lipschitz nonlinear systems with large external disturbances as well. In such a case, the estimation errors converge to a small region of the origin. The size of the region can be small enough by selecting a proper parameter. Compared with the existing results, the design parameters can be easily obtained by solving LMIs. (English)
Keyword: sampled-data observer
Keyword: nonlinear systems
Keyword: Lipschitz
Keyword: sampling period
Keyword: LMIs
MSC: 93B51
MSC: 93C57
idZBL: Zbl 06987029
idMR: MR3863251
DOI: 10.14736/kyb-2018-4-0699
.
Date available: 2018-10-30T14:42:47Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147419
.
Reference: [1] Ahrens, J., Tan, X., Khalil, H.: Multirate sampled-data output feedback control with application to smart material actuated systems..IEEE Trans. Automat. Control 54 (2009), 2518-2529. MR 2571917, 10.1109/tac.2009.2031204
Reference: [2] Boutat, D.: Extended nonlinear observer normal forms for a class of nonlinear dynamical systems..Int. J. Robust Nonlinear Control 25 (2015), 461-474. MR 3304211, 10.1002/rnc.3102
Reference: [3] Boyd, S., Ghaoui, L., al., E. Feron et: Linear Matrix Inequalities in System and Control Theory..Society for Industrial and Applied Mathematics, ch. 1.2, Philadelphia 1994. MR 1284712, 10.1137/1.9781611970777
Reference: [4] Chen, M., Chen, C.: Robust nonlinear observer for Lipschitz nonlinear systems subject to disturbances..IEEE Trans. Automat. Control 52 (2007), 2365-2369. MR 2374276, 10.1109/tac.2007.910724
Reference: [5] Dezuo, T., Trofino, A.: LMI conditions for designing rational nonlinear observers..In: 2014 American Control Conference. 47 (2014), 5343-5348. 10.1109/acc.2014.6858805
Reference: [6] Dinh, T., Andrieu, V., Nadri, M., al., et: Continuous-discrete time observer design for Lipschitz systems with sampled measurements..IEEE Trans. Automat. Control 60 (2015), 787-792. MR 3318404, 10.1109/tac.2014.2329211
Reference: [7] Dong, Y., Liu, J., Mei, S.: Observer design for a class of nonlinear discrete-time systems with time-delay..Kybernetika 49 (2013), 341-358. Zbl 1264.93144, MR 3085400
Reference: [8] Doyle, J., Stein, G.: Robustness with observers..IEEE Trans. Automatic Control 24 (1979), 607-611. MR 0538818, 10.1109/tac.1979.1102095
Reference: [9] Ekramian, M., Sheikholeslam, F., al., S. Hosseinnia et: Adaptive state observer for Lipschitz nonlinear systems..Systems Control Lett. 62 (2013), 319-323. MR 3031101, 10.1016/j.sysconle.2013.01.002
Reference: [10] Gupta, M., Tomar, N., Bhaumik, S.: Observer Design for Descriptor Systems with Lipschitz Nonlinearities: An LMI Approach..Nonlinear Dynamics Systems Theory 14 (2014), 291-301. MR 3560210
Reference: [11] Kang, W., Krener, A., al., M. Xiao et: A survey of observers for nonlinear dynamical systems..In: Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications, Vol. II, Springer Berlin Heidelberg 2013, pp. 1-25. 10.1007/978-3-642-35088-7\_1
Reference: [12] Khalil, H.: Nonlinear System..Upper Saddle River, Prentice Hall, ch. 14.5, NJ 2000.
Reference: [13] Kwakernaak, H., Sivan, R.: Linear Optimal Control Systems..Wiley, ch. 3, Theorem 3.14, New York 1972. MR 0406607
Reference: [14] Lewis, F.: Applied Optimal Control and Estimation..Englewood Cliffs, Prentice-Hall, ch. 3, Theorem 2, NJ 1992.
Reference: [15] Marino, R., Tomei, P.: Nonlinear control design..Automatica 33 (2009), 1769-1770. 10.1016/s0005-1098(97)82237-6
Reference: [16] Nešić, D., Teel, A.: A framework for stabilization of nonlinear sampled-data systems based on their approximate discrete-time models..IEEE Trans. Automat. Control 49 (2004), 1103-1122. MR 2071938, 10.1109/tac.2004.831175
Reference: [17] Oucief, N., Tadjine, M., Labiod, S.: Adaptive observer-based fault estimation for a class of Lipschitz nonlinear systems..Archives Control Sci. 26 (2016), 245-259. MR 3530358, 10.1515/acsc-2016-0014
Reference: [18] Pan, J., Meng, M., Feng, J.: A note on observers design for one-sided Lipschitz nonlinear systems..In: Control Conference IEEE (2015), pp. 1003-1007. 10.1109/chicc.2015.7259771
Reference: [19] Perez, C., Mera, M.: Robust observer-based control of switched nonlinear systems with quantized and sample output..Kybernetika 54 (2015), 59-80. MR 3333833, 10.14736/kyb-2015-1-0059
Reference: [20] Rehák, B.: Sum-of-squares based observer design for polynomial systems with a known fixed time delay..Kybernetika 51 (2015), 856-873. MR 3445988, 10.14736/kyb-2015-5-0856
Reference: [21] Saberi, A., Sannuti, P., Chen, B.: $H_2$ Optimal Control..Englewood Cliffs, Prentice-Hall, ch. 4, Theorem 4.1.2, NJ 1995.
Reference: [22] Shen, Y., Zhang, D., Xia, X.: Continuous output feedback stabilization for nonlinear systems based on sampled and delayed output measurements..Internat. J. Robust and Nonlinear Control 26 (2016), 3075-3087. Zbl 1346.93320, MR 3537171, 10.1002/rnc.3491
Reference: [23] Shen, Y., Zhang, D., Xia, X.: Continuous observer design for a class of multi-output nonlinear systems with multi-rate sampled and delayed output measurements..Automatica 75 (2017), 127-132. MR 3582161, 10.1016/j.automatica.2016.09.028
Reference: [24] Stein, G., Athans, M.: The LQG/LTR procedure for multivariable feedback control design..IEEE Trans. Automat. Control 32 (1987), 105-114. 10.1109/tac.1987.1104550
Reference: [25] Tahir, A., Magri, A., Ahmed-Ali, T., al., et: Sampled-data nonlinear observer design for sensorless synchronous PMSM..IFAC-Papers OnLine 48 (2015), 327-332. 10.1016/j.ifacol.2015.09.206
Reference: [26] Thau, F.: Observing the state if nonlinear dynamic systems..Int. J. Control 17 (1973), 471-479. 10.1080/00207177308932395
Reference: [27] Wang, Y., Liu, X., Xiao, J., Shen, Y.: Output formation-containment of interacted heterogeneous linear systems by distributed hybrid active control..Automatica 93 (2018), 26-32. MR 3810889, 10.1016/j.automatica.2018.03.020
Reference: [28] Yu, L.: Robust Control: Linear Matrix Inequality Approach..Tsinghua University Press 2002.
Reference: [29] Zemouche, A., Boutayeb, M.: On LMI conditions to design observers for Lipschitz nonlinear systems..Automatica 49 (2013), 585-591. MR 3004728, 10.1016/j.automatica.2012.11.029
Reference: [30] Zhang, D., Shen, Y. J.: Continuous sampled-data observer design for nonlinear systems with time delay larger or samller than the sampling period..IEEE Trans. Automat. Control 62 (2017), 5822-5829. MR 3730959, 10.1109/tac.2016.2638043
Reference: [31] Zhang, D., Shen, Y., Xia, X.: Globally uniformly ultimately bounded observer design for a class of nonlinear systems with sampled and delayed measurements..Kybernetika 52 (2016), 441-460. MR 3532516, 10.14736/kyb-2016-3-0441
Reference: [32] Zhang, W., Su, H., al., S. Su et: Nonlinear $H_\infty$ observer design for one-sided Lipschitz systems..Neurocomputing (2014), 505-511.
Reference: [33] Zhang, W., Su, H., al., F. Zhu et: A note on observers for discrete-time Lipschitz nonlinear systems..IEEE Trans. Circuits Systems II Express Briefs 29 (2012), 123-127. 10.1109/tcsii.2011.2174671
Reference: [34] Zhou, Y., Soh, Y., Shen, J.: High-gain observer with higher order sliding mode for state and unknown disturbance estimations..Int. J. Robust abd Nonlinear Control 24 (2016), 2136-2151. MR 3259380, 10.1002/rnc.2982
.

Files

Files Size Format View
Kybernetika_54-2018-4_4.pdf 686.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo