Previous |  Up |  Next

Article

Title: {\bf X}-simplicity of interval max-min matrices (English)
Author: Plavka, Ján
Author: Berežný, Štefan
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 54
Issue: 3
Year: 2018
Pages: 413-426
Summary lang: English
.
Category: math
.
Summary: A matrix $A$ is said to have \mbox{\boldmath$X$}-simple image eigenspace if any eigenvector $x$ belonging to the interval $\mbox{\boldmath$X$}=\{x\colon \underline x\leq x\leq\overline x\}$ containing a constant vector is the unique solution of the system $A\otimes y=x$ in \mbox{\boldmath$X$}. The main result of this paper is an extension of \mbox{\boldmath$X$}-simplicity to interval max-min matrix $\mbox{\boldmath$A$}=\{A\colon \underline A\leq A\leq\overline A\}$ distinguishing two possibilities, that at least one matrix or all matrices from a given interval have \mbox{\boldmath$X$}-simple image eigenspace. \mbox{\boldmath$X$}-simplicity of interval matrices in max-min algebra are studied and equivalent conditions for interval matrices which have \mbox{\boldmath$X$}-simple image eigenspace are presented. The characterized property is related to and motivated by the general development of tropical linear algebra and interval analysis, as well as the notions of simple image set and weak robustness (or weak stability) that have been studied in max-min and max-plus algebras. (English)
Keyword: max-min algebra
Keyword: interval
Keyword: eigenspace
Keyword: simple image set
MSC: 08A72
MSC: 15A18
MSC: 15A80
idZBL: Zbl 06987015
idMR: MR3844825
DOI: 10.14736/kyb-2018-3-0413
.
Date available: 2018-11-02T10:02:38Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147428
.
Reference: [1] Butkovič, P.: Simple image set of $(\max,+)$ linear mappings..Discrete Appl. Math. 105 (2000), 73-86. Zbl 0976.15013, MR 1780462, 10.1016/s0166-218x(00)00212-2
Reference: [2] Butkovič, P.: Max-linear Systems: Theory and Applications..Springer, 2010. 10.1007/978-1-84996-299-5
Reference: [3] Butkovič, P., Schneider, H., Sergeev, S.: Recognising weakly stable matrices..SIAM J. Control Optim. 50 (2012), 5, 3029-3051. MR 3022097, 10.1007/978-1-84996-299-5
Reference: [4] Cechlárová, K.: Efficient computation of the greatest eigenvector in fuzzy algebra..Tatra Mt. Math. Publ. 12 (1997), 73-79. Zbl 0963.65041, MR 1607194, 10.1016/0024-3795(92)90302-q
Reference: [5] Nola, A. Di, Gerla, B.: Algebras of Łukasiewicz logic and their semiring reducts..In: Idempotent Mathematics and Mathematical Physics (G. L. Litvinov and V. P. Maslov, eds.), 2005, pp. 131-144. MR 2149001, 10.1090/conm/377/06988
Reference: [6] Nola, A. Di, Russo, C.: Łukasiewicz transform and its application to compression and reconstruction of digital images..Inform. Sci. 177 (2007), 1481-1498. Zbl 1114.06009, MR 2307173, 10.1016/j.ins.2006.09.002
Reference: [7] Gavalec, M., Zimmermann, K.: Classification of solutions to systems of two-sided equations with interval coefficients..Int. J. Pure Applied Math. 45 (2008), 533-542. Zbl 1154.65036, MR 2426231
Reference: [8] Gavalec, M.: Periodicity in Extremal Algebra..Gaudeamus, Hradec Králové 2004.
Reference: [9] Gavalec, M., Plavka, J.: Fast algorithm for extremal biparametric eigenproblem..Acta Electrotechnica et Informatica 7 (2007), 3, 1-5.
Reference: [10] Golan, J. S.: Semirings and Their Applications..Springer, 1999. Zbl 0947.16034, MR 1746739, 10.1007/978-94-015-9333-5_8
Reference: [11] Gondran, M., Minoux, M.: Graphs, Dioids and Semirings: New Models and Algorithms..Springer 2008. Zbl 1201.16038, MR 2389137, 10.1007/978-0-387-75450-5
Reference: [12] Heidergott, B., Olsder, G.-J., Woude, J. van der: Max-plus at Work..Princeton University Press, 2005. MR 2188299, 10.1515/9781400865239
Reference: [13] Kolokoltsov, V. N., Maslov, V. P.: Idempotent Analysis and its Applications..Kluwer, Dordrecht 1997. Zbl 0941.93001, MR 1447629, 10.1007/978-94-015-8901-7
Reference: [14] Kreinovich, V., Lakeyev, A., Rohn, J., Kahl, R.: Computational Complexity and Feasibility of Data Processing and Interval Computations..Kluwer Academic Publishers, Dordrecht-Boston-London 1998. Zbl 0945.68077, MR 1491092
Reference: [15] Litvinov, G. L., (eds.), V. P. Maslov: Idempotent Mathematics and Mathematical Physics..AMS Contemporary Mathematics 377 (2005). Zbl 1069.00011, MR 2148995, 10.1090/conm/377
Reference: [16] Litvinov, G. L., (eds.), S. N. Sergeev: Tropical and Idempotent Mathematics..AMS Contemporary Mathematics 495 (2009). Zbl 1291.00065, MR 2560756, 10.1090/conm/495
Reference: [17] Molnárová, M., Myšková, H., Plavka, J.: The robustness of interval fuzzy matrices..Linear Algebra Appl. 438 (2013), 8, 3350-3364. MR 3023281, 10.1016/j.laa.2012.12.020
Reference: [18] Myšková, H.: Interval eigenvectors of circulant matrices in fuzzy algebra..Acta Electrotechnica et Informatica 12 (2012), 3, 57-61. 10.2478/v10198-012-0033-3
Reference: [19] Myšková, H.: Weak stability of interval orbits of circulant matrices in fuzzy algebra..Acta Electrotechnica et Informatica 12 (2012), 3, 51-56. 10.2478/v10198-012-0032-4
Reference: [20] Myšková, H.: Robustness of interval toeplitz matrices in fuzzy algebra..Acta Electrotechnica et Informatica 12 (2012), 4, 56-60. 10.2478/v10198-012-0048-9
Reference: [21] Plavka, J., Szabó, P.: On the $\lambda$-robustness of matrices over fuzzy algebra..Discrete Applied Math. 159 (2011), 5, 381-388. Zbl 1225.15027, MR 2755915, 10.1016/j.dam.2010.11.020
Reference: [22] Plavka, J., Szabó, P.: The $O(n^2 )$ algorithm for the eigenproblem of an $\epsilon$-triangular Toeplitz matrices in max-plus algebra..Acta Electrotechnica et Informatica 9 (2009), 4, 50-54.
Reference: [23] Plavka, J.: On the weak robustness of fuzzy matrices..Kybernetika 49 (2013), 1, 128-140. Zbl 1267.15026, MR 3097386
Reference: [24] Plavka, J., Sergeev, S.: Characterizing matrices with $X $-simple image eigenspace in max-min semiring..Kybernetika 52 (2016), 4, 497-513. MR 3565766, 10.14736/kyb-2016-4-0497
Reference: [25] Rohn, J.: Systems of linear interval equations..Linear Algebra and Its Appl.126 (1989), 39-78. Zbl 1061.15003, MR 1040771, 10.1016/0024-3795(89)90004-9
Reference: [26] Sanchez, E.: Resolution of eigen fuzzy sets equations..Fuzzy Sets Systems 1 (1978), 69-74. Zbl 0366.04001, MR 0494745, 10.1016/0165-0114(78)90033-7
Reference: [27] Sergeev, S.: Max-algebraic attraction cones of nonnegative irreducible matrices..Linear Algebra Appl. 435 (2011), 7, 1736-1757. Zbl 1226.15017, MR 2810668, 10.1016/j.laa.2011.02.038
Reference: [28] Tan, Yi-Jia: Eigenvalues and eigenvectors for matrices over distributive lattices..Linear Algebra Appl. 283 (1998), 257-272. Zbl 0932.15005, MR 1657171, 10.1016/s0024-3795(98)10105-2
Reference: [29] Tan, Yi-Jia: On the eigenproblem of matrices over distributive lattices..Lin. Algebra Appl. 374 (2003), 87-106. MR 2008782, 10.1016/s0024-3795(03)00550-0
Reference: [30] Zimmernann, K.: Extremální algebra (in Czech)..Ekonomický ústav ČSAV Praha, 1976.
.

Files

Files Size Format View
Kybernetika_54-2018-3_1.pdf 434.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo