Title:
|
Natural operations on holomorphic forms (English) |
Author:
|
Navarro, A. |
Author:
|
Navarro, J. |
Author:
|
Tejero Prieto, C. |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
54 |
Issue:
|
4 |
Year:
|
2018 |
Pages:
|
239-254 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We prove that the only natural differential operations between holomorphic forms on a complex manifold are those obtained using linear combinations, the exterior product and the exterior differential. In order to accomplish this task we first develop the basics of the theory of natural holomorphic bundles over a fixed manifold, making explicit its Galoisian structure by proving a categorical equivalence à la Galois. (English) |
Keyword:
|
natural bundles |
Keyword:
|
natural operations |
MSC:
|
32L05 |
MSC:
|
58A32 |
idZBL:
|
Zbl 06997353 |
idMR:
|
MR3887363 |
DOI:
|
10.5817/AM2018-4-239 |
. |
Date available:
|
2018-12-06T16:10:55Z |
Last updated:
|
2020-01-05 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147500 |
. |
Reference:
|
[1] Atiyah, M.: Complex analytic connections in fibre bundles.Trans. Amer. Math. Soc. 85 (1957), 181–207. MR 0086359, 10.1090/S0002-9947-1957-0086359-5 |
Reference:
|
[2] Atiyah, M., Bott, R., Patodi, V.K.: On the heat equation and the index theorem.Invent. Math. 19 (1973), 279–330. MR 0650828, 10.1007/BF01425417 |
Reference:
|
[3] Bernig, A.: Natural operations on differential forms on contact manifolds.Differential Geom. Appl. 50 (2017), 34–51. MR 3588639, 10.1016/j.difgeo.2016.10.005 |
Reference:
|
[4] Epstein, D.B.A., Thurston, W.P.: Transformation groups and natural bundles.Proc. Lond. Math. Soc. 38 (1976), 219–236. MR 0531161 |
Reference:
|
[5] Freed, D.S., Hopkins, M.J.: Chern-Weil forms and abstract homotopy theory.Bull. Amer. Math. Soc. 50 (2013), 431–468. MR 3049871, 10.1090/S0273-0979-2013-01415-0 |
Reference:
|
[6] Goodman, R., Wallach, N.: Representation and Invariants of the Classical Groups.Cambridge University Press, 1998. MR 1606831 |
Reference:
|
[7] Gordillo, A., Navarro, J., Sancho, P.: A remark on the invariant theory of real Lie groups.Colloq. Math., to appear. |
Reference:
|
[8] Katsylo, P.I., Timashev, D.A.: Natural differential operations on manifolds: an algebraic approach.Sbornik: Mathematics 199 (2008), 1481–1503. MR 2473812, 10.1070/SM2008v199n10ABEH003969 |
Reference:
|
[9] Kolář, I., Michor, P.W., Slovák, J.: Natural Operations in Differential Geometry.Springer-Verlag, Berlin, 1993. MR 1202431 |
Reference:
|
[10] Krupka, D., Mikolášová, V.: On the uniqueness of some differential invariants: $\,d, [,], \nabla $.Czechoslovak Math. J. 34 (1984), 588–597. MR 0764440 |
Reference:
|
[11] Mason-Brown, L.: Natural structures in differential geometry.private communication. |
Reference:
|
[12] Navarro, J., Sancho, J.B.: Peetre-Slovák’s theorem revisited.arXiv: 1411.7499. |
Reference:
|
[13] Navarro, J., Sancho, J.B.: Natural operations on differential forms.Differential Geom. Appl. 38 (2015), 159–174. MR 3304675, 10.1016/j.difgeo.2014.12.003 |
Reference:
|
[14] Nijenhuis, A.: Natural bundles and their general properties.Differential Geometry in honor of K. Yano, Kinokuniya, Tokyo, 1972, pp. 317–334. Zbl 0246.53018, MR 0380862 |
Reference:
|
[15] Palais, R.S.: Natural operations on differential forms.Trans. Amer. Math. Soc. 92 (1959), 125–141. MR 0116352, 10.1090/S0002-9947-1959-0116352-7 |
Reference:
|
[16] Terng, C.L.: Natural vector bundles and natural differential operators.Amer. J. Math. 100 (1978), 775–828. Zbl 0422.58001, MR 0509074, 10.2307/2373910 |
Reference:
|
[17] Timashev, D.A.: On differential characteristic classes of metrics and connections.Fundam. Priklad. Mat. 20 (2015), 167–183. MR 3472276 |
. |