Title:
|
Linear FDEs in the frame of generalized ODEs: variation-of-constants formula (English) |
Author:
|
Collegari, Rodolfo |
Author:
|
Federson, Márcia |
Author:
|
Frasson, Miguel |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
68 |
Issue:
|
4 |
Year:
|
2018 |
Pages:
|
889-920 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We present a variation-of-constants formula for functional differential equations of the form $$ \dot {y}={\mathcal L}(t)y_t+f(y_t,t), \quad y_{t_0}=\varphi , $$ where ${\mathcal L}$ is a bounded linear operator and $\varphi $ is a regulated function. Unlike the result by G. Shanholt (1972), where the functions involved are continuous, the novelty here is that the application $t\mapsto f(y_t,t)$ is Kurzweil integrable with $t$ in an interval of $\mathbb R$, for each regulated function $y$. This means that $t\mapsto f(y_t,t)$ may admit not only many discontinuities, but it can also be highly oscillating and yet, we are able to obtain a variation-of-constants formula. Our main goal is achieved via theory of generalized ordinary differential equations introduced by J. Kurzweil (1957). As a matter of fact, we establish a variation-of-constants formula for general linear generalized ordinary differential equations in Banach spaces where the functions involved are Kurzweil integrable. We start by establishing a relation between the solutions of the Cauchy problem for a linear generalized ODE of type $$ \frac {{\rm d}x}{{\rm d}\tau } = D[A(t)x],\quad x(t_0)=\widetilde {x} $$ and the solutions of the perturbed Cauchy problem $$ \frac {{\rm d}x}{{\rm d}\tau } = D[A(t)x+F(x,t)], \quad x(t_0)=\widetilde {x}. $$ Then we prove that there exists a one-to-one correspondence between a certain class of linear generalized ODE and the Cauchy problem for a linear functional differential equations of the form $$ \dot {y}={\mathcal L}(t)y_t, \quad y_{t_0}=\varphi , $$ where $\mathcal L$ is a bounded linear operator and $\varphi $ is a regulated function. The main result comes as a consequence of such results. Finally, because of the extent of generalized ODEs, we are also able to describe the variation-of-constants formula for both impulsive FDEs and measure neutral FDEs. (English) |
Keyword:
|
functional differential equation |
Keyword:
|
variation-of-constants formula |
MSC:
|
34K06 |
MSC:
|
34K40 |
idZBL:
|
Zbl 07031687 |
idMR:
|
MR3881886 |
DOI:
|
10.21136/CMJ.2018.0023-17 |
. |
Date available:
|
2018-12-07T06:16:51Z |
Last updated:
|
2021-01-04 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147511 |
. |
Reference:
|
[1] Afonso, S. M., Bonotto, E. M., Federson, M., Schwabik, Š.: Discontinuous local semiflows for Kurzweil equations leading to LaSalle's invariance principle for differential systems with impulses at variable times.J. Differ. Equations 250 (2011), 2969-3001. Zbl 1213.34019, MR 2771252, 10.1016/j.jde.2011.01.019 |
Reference:
|
[2] Bonotto, E. M., Federson, M., Muldowney, P.: A Feynman-Kac solution to a random impulsive equation of Schrödinger type.Real Anal. Exch. 36 (2011), 107-148. Zbl 1246.28008, MR 3016407, 10.14321/realanalexch.36.1.0107 |
Reference:
|
[3] Das, P. C., Sharma, R. R.: Existence and stability of measure differential equations.Czech. Math. J. 22 (1972), 145-158. Zbl 0241.34070, MR 0304815 |
Reference:
|
[4] Federson, M., Schwabik, Š.: Generalized ODE approach to impulsive retarded functional differential equations.Differ. Integral Equ. 19 (2006), 1201-1234. Zbl 1212.34251, MR 2278005 |
Reference:
|
[5] Federson, M., Schwabik, Š.: Stability for retarded functional differential equations.Ukr. Mat. Zh. 60 (2008), 107-126 translated in Ukr. Math. J. 60 2008 121-140. Zbl 1164.34530, MR 2410167, 10.1007/s11253-008-0047-2 |
Reference:
|
[6] Federson, M., Schwabik, Š.: A new approach to impulsive retarded differential equations: stability results.Funct. Differ. Equ. 16 (2009), 583-607. Zbl 1200.34097, MR 2597466 |
Reference:
|
[7] Federson, M., Táboas, P.: Topological dynamics of retarded functional differential equations.J. Differ. Equations 195 (2003), 313-331. Zbl 1054.34102, MR 2016815, 10.1016/S0022-0396(03)00061-5 |
Reference:
|
[8] Hale, J. K., Lunel, S. M. Verduyn: Introduction to Functional-Differential Equations.Applied Mathematical Sciences 99. Springer, New York (1993). Zbl 0787.34002, MR 1243878, 10.1007/978-1-4612-4342-7 |
Reference:
|
[9] Henstock, R.: Lectures on the Theory of Integration.Series in Real Analysis 1. World Scientific Publishing, Singapore (1988). Zbl 0668.28001, MR 0963249 |
Reference:
|
[10] Hönig, C. S.: Volterra Stieltjes-Integral Equations. Functional Analytic Methods; Linear Constraints.Mathematics Studies 16. North-Holland Publishing, Amsterdam (1975). Zbl 0307.45002, MR 0499969 |
Reference:
|
[11] Imaz, C., Vorel, Z.: Generalized ordinary differential equations in Banach space and applications to functional equations.Bol. Soc. Mat. Mex., II. Ser 11 (1966), 47-59. Zbl 0178.44203, MR 0232060 |
Reference:
|
[12] Kurzweil, J.: Generalized ordinary differential equations and continuous dependence on a parameter.Czech. Math. J. 7 (1957), 418-448. Zbl 0090.30002, MR 0111875 |
Reference:
|
[13] Kurzweil, J.: Generalized ordinary differential equations.Czech. Math. J. 8 (1958), 360-388. Zbl 0094.05804, MR 0111878 |
Reference:
|
[14] Kurzweil, J.: Unicity of solutions of generalized differential equations.Czech. Math. J. 8 (1958), 502-509. Zbl 0094.05901, MR 0111880 |
Reference:
|
[15] Kurzweil, J.: Addition to my paper ``Generalized ordinary differential equations and continuous dependence on a parameter''.Czech. Math. J. 9 (1959), 564-573. Zbl 0094.05902, MR 0111882 |
Reference:
|
[16] Kurzweil, J.: Problems which lead to a generalization of the concept of an ordinary nonlinear differential equation.Differ. Equ. Appl Publ. House Czechoslovak Acad. Sci., Prague; Academic Press, New York (1963), 65-76. Zbl 0151.12501, MR 0177173 |
Reference:
|
[17] Monteiro, G. A., Slavík, A.: Linear measure functional differential equations with infinite delay.Math. Nachr. 287 (2014), 1363-1382. Zbl 1305.34108, MR 3247022, 10.1002/mana.201300048 |
Reference:
|
[18] Muldowney, P.: The Henstock integral and the Black-Scholes theory of derivative asset pricing.Real Anal. Exch. 26 (2000), 117-131. Zbl 1025.91013, MR 1825499, 10.2307/44153153 |
Reference:
|
[19] Muldowney, P.: A Modern Theory of Random Variation. With Applications in Stochastic Calculus, Financial Mathematics, and Feynman Integration.John Wiley & Sons, Hoboken (2012). Zbl 1268.60002, MR 3087034, 10.1002/9781118345955 |
Reference:
|
[20] Oliva, F., Vorel, Z.: Functional equations and generalized ordinary differential equations.Bol. Soc. Mat. Mex., II. Ser. 11 (1966), 40-46. Zbl 0178.44204, MR 0239227 |
Reference:
|
[21] Schwabik, Š.: Generalized Ordinary Differential Equations.Series in Real Analysis 5. World Scientific Publishing, River Edge (1992). Zbl 0781.34003, MR 1200241 |
Reference:
|
[22] Schwabik, Š.: Abstract Perron-Stieltjes integral.Math. Bohem. 121 (1996), 425-447. Zbl 0879.28021, MR 1428144 |
Reference:
|
[23] Schwabik, Š.: Linear Stieltjes integral equations in Banach spaces.Math. Bohem. 124 (1999), 433-457. Zbl 0937.34047, MR 1722877 |
Reference:
|
[24] Schwabik, Š.: Linear Stieltjes integral equations in Banach spaces II; Operator valued solutions.Math. Bohem. 125 (2000), 431-454. Zbl 0974.34057, MR 1802292 |
Reference:
|
[25] Shanholt, G. A.: A nonlinear variation-of-constants formula for functional differential equations.Math. Syst. Theory 6 (1972), 343-352. Zbl 0248.34070, MR 0336002, 10.1007/BF01740726 |
Reference:
|
[26] Talvila, E.: Integrals and Banach spaces for finite order distributions.Czech. Math. J. 62 (2012), 77-104. Zbl 1249.26012, MR 2899736, 10.1007/s10587-012-0018-5 |
Reference:
|
[27] Tvrdý, M.: Linear integral equations in the space of regulated functions.Math. Bohem. 123 (1998), 177-212. Zbl 0941.45001, MR 1673977 |
. |