Previous |  Up |  Next

Article

Title: The spectral determinations of the connected multicone graphs $ K_w\bigtriangledown mP_{17} $ and $ K_w\bigtriangledown mS $ (English)
Author: Abdian, Ali Zeydi
Author: Mirafzal, S. Morteza
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 68
Issue: 4
Year: 2018
Pages: 1091-1104
Summary lang: English
.
Category: math
.
Summary: Finding and discovering any class of graphs which are determined by their spectra is always an important and interesting problem in the spectral graph theory. The main aim of this study is to characterize two classes of multicone graphs which are determined by both their adjacency and Laplacian spectra. A multicone graph is defined to be the join of a clique and a regular graph. Let $ K_w $ denote a complete graph on $ w $ vertices, and let $ m $ be a positive integer number. In A. Z. Abdian (2016) it has been shown that multicone graphs $ K_w\bigtriangledown P_{17}$ and $ K_w\bigtriangledown S$ are determined by both their adjacency and Laplacian spectra, where $ P_{17} $ and $ S$ denote the Paley graph of order 17 and the Schläfli graph, respectively. In this paper, we generalize these results and we prove that multicone graphs $ K_w\bigtriangledown mP_{17}$ and $ K_w\bigtriangledown mS$ are determined by their adjacency spectra as well as their Laplacian spectra. (English)
Keyword: DS (determined by spectrum) graph
Keyword: Schläfli graph
Keyword: multicone graph
Keyword: adjacency spectrum
Keyword: Laplacian spectrum
Keyword: Paley graph of order 17
MSC: 05C50
idZBL: Zbl 07031700
idMR: MR3881899
DOI: 10.21136/CMJ.2018.0098-17
.
Date available: 2018-12-07T06:23:08Z
Last updated: 2021-01-04
Stable URL: http://hdl.handle.net/10338.dmlcz/147524
.
Reference: [1] Abdian, A. Z.: Graphs which are determined by their spectrum.Konuralp J. Math. 4 (2016), 34-41. Zbl 1355.05152, MR 3571504
Reference: [2] Abdian, A. Z.: Two classes of multicone graphs determined by their spectra.J. Math. Ext. 10 (2016), 111-121. MR 3621464
Reference: [3] Abdian, A. Z.: Graphs cospectral with multicone graphs $ K_w\bigtriangledown L(P) $.TWMS. J. App. Eng. Math. 7 (2017), 181-187. MR 3741897
Reference: [4] Abdian, A. Z.: The spectral determinations of the multicone graphs $K_w\bigtriangledown P$.Avaible at https://arxiv.org/abs/1706.02661 (2017). MR 3948630
Reference: [5] Abdian, A. Z., Mirafzal, S. M.: On new classes of multicone graphs determined by their spectrums.Alg. Struc. Appl. 2 (2015), 23-34. MR 3571504
Reference: [6] Abdian, A. Z., Mirafzal, S. M.: The spectral characterizations of the connected multicone graphs $K_w\bigtriangledown LHS$ and $K_w\bigtriangledown LGQ(3,9) $.Discrete Math. Algorithms Appl. 10 (2018), Article ID 1850019. Zbl 1383.05190, MR 3786377, 10.1142/S1793830918500192
Reference: [7] Abdollahi, A., Janbaz, S., Oboudi, M. R.: Graphs cospectral with a friendship graph or its complement.Trans. Comb. 2 (2013), 37-52. Zbl 1302.05083, MR 3150451
Reference: [8] Bapat, R. B.: Graphs and Matrices.Universitext, Springer, London; Hindustan Book Agency, New Delhi (2014). Zbl 1301.05001, MR 3289036, 10.1007/978-1-4471-6569-9
Reference: [9] Biggs, N.: Algebraic Graph Theory.Cambridge Mathematical Library, Cambridge University Press, Cambridge (1994). Zbl 0797.05032, MR 1271140, 10.1017/CBO9780511608704
Reference: [10] Boulet, R., Jouve, B.: The lollipop graph is determined by its spectrum.Electron. J. Comb. 15 (2008), Researh Paper 74, 43 pages. Zbl 1163.05324, MR 2411451
Reference: [11] Brouwer, A. E., Haemers, W. H.: Spectra of Graphs.Universitext, Springer, New York (2012). Zbl 1231.05001, MR 2882891, 10.1007/978-1-4614-1939-6
Reference: [12] Cioabă, S. M., Haemers, W. H., Vermette, J. R., Wong, W.: The graphs with all but two eigenvalues equal to $\pm1$.J. Algebr. Comb. 41 (2015), 887-897. Zbl 1317.05111, MR 3328184, 10.1007/s10801-014-0557-y
Reference: [13] Cvetković, D., Rowlinson, P., Simić, S.: An Introduction to the Theory of Graph Spectra.London Mathematical Society Student Texts 75, Cambridge University Press, Cambridge (2010). Zbl 1211.05002, MR 2571608, 10.1017/CBO9780511801518
Reference: [14] Das, K. C.: Proof of conjectures on adjacency eigenvalues of graphs.Discrete Math. 313 (2013), 19-25. Zbl 1254.05099, MR 3016969, 10.1016/j.disc.2012.09.017
Reference: [15] Doob, M., Haemers, W. H.: The complement of the path is determined by its spectrum.Linear Algebra Appl. 356 (2002), 57-65. Zbl 1015.05047, MR 1944676, 10.1016/S0024-3795(02)00323-3
Reference: [16] Günthard, H. H., Primas, H.: Zusammenhang von Graphentheorie und MO-Theorie von Molekeln mit Systemen konjugierter Bindungen.Helv. Chim. Acta. German 39 (1956), 1645-1653. 10.1002/hlca.19560390623
Reference: [17] Haemers, W. H., Liu, X., Zhang, Y.: Spectral characterizations of lollipop graphs.Linear Algebra Appl. 428 (2008), 2415-2423. Zbl 1226.05156, MR 2416560, 10.1016/j.laa.2007.10.018
Reference: [18] Knauer, U.: Algebraic Graph Theory. Morphisms, Monoids and Matrices.De Gruyter Studies in Mathematics 41, Walter de Gruyter, Berlin (2011). Zbl 1338.05001, MR 2848562, 10.1515/9783110255096
Reference: [19] Liu, Y., Sun, Y. Q.: On the second Laplacian spectral moment of a graph.Czech. Math. J. 60 (2010), 401-410. Zbl 1224.05312, MR 2657957, 10.1007/s10587-010-0043-1
Reference: [20] Merris, R.: Laplacian matrices of graphs: a survey.Linear Algebra Appl. 197/198 (1994), 143-176. Zbl 0802.05053, MR 1275613, 10.1016/0024-3795(94)90486-3
Reference: [21] Mirafzal, S. M., Abdian, A. Z.: Spectral characterization of new classes of multicone graphs.Stud. Univ. Babeş-Bolyai Math. 62 (2017), 275-286. Zbl 06847482, MR 3714100, 10.24193/subbmath.2017.3.01
Reference: [22] Peisert, W.: All self-complementary symmetric graphs.J. Algebra 240 (2001), 209-229. Zbl 1021.05051, MR 1830551, 10.1006/jabr.2000.8714
Reference: [23] Rowlinson, P.: The main eigenvalues of a graph: A survey.Appl. Anal. Discrete Math. 1 (2007), 445-471. Zbl 1199.05241, MR 2355287, 10.2298/AADM0702445R
Reference: [24] Dam, E. R. van: Nonregular graphs with three eigenvalues.J. Comb. Theory, Ser. B 73 (1998), 101-118. Zbl 0917.05044, MR 1631983, 10.1006/jctb.1998.1815
Reference: [25] Dam, E. R. van, Haemers, W. H.: Which graphs are determined by their spectrum?.Linear Algebra Appl. 373 (2003), 241-272. Zbl 1026.05079, MR 2022290, 10.1016/S0024-3795(03)00483-X
Reference: [26] Dam, E. R. van, Haemers, W. H.: Developments on spectral characterizations of graphs.Discrete Math. 309 (2009), 576-586. Zbl 1205.05156, MR 2499010, 10.1016/j.disc.2008.08.019
Reference: [27] Wang, J., Belardo, F., Huang, Q., Borovićanin, B.: On the two largest $Q$-eigenvalues of graphs.Discrete Math. 310 (2010), 2858-2866. Zbl 1208.05079, MR 2677645, 10.1016/j.disc.2010.06.030
Reference: [28] Wang, W., Xu, C.: A sufficient condition for a family of graphs being determined by their generalized spectra.Eur. J. Comb. 27 (2006), 826-840. Zbl 1092.05050, MR 2226420, 10.1016/j.ejc.2005.05.004
Reference: [29] Wang, J., Zhao, H., Huang, Q.: Spectral characterization of multicone graphs.Czech. Math. J. 62 (2012), 117-126. Zbl 1249.05256, MR 2899739, 10.1007/s10587-012-0021-x
Reference: [30] West, D. B.: Introduction to Graph Theory.Prentice-Hall of India, New Delhi (2005). Zbl 1121.05304, MR 1367739
.

Files

Files Size Format View
CzechMathJ_68-2018-4_15.pdf 323.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo