Previous |  Up |  Next

Article

Title: Stability analysis of uncertain complex-variable delayed nonlinear systems via intermittent control with multiple switched periods (English)
Author: Zheng, Song
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 54
Issue: 5
Year: 2018
Pages: 937-957
Summary lang: English
.
Category: math
.
Summary: In this paper, an intermittent control approach with multiple switched periods is proposed for the robust exponential stabilization of uncertain complex-variable delayed nonlinear systems with parameters perturbation, in which the considered complex systems have bounded parametric uncertainties. Based on the Lyapunov stability theory and comparison theorem of differential equations, some stability criteria are established for a class of uncertain complex delayed nonlinear systems with parameters perturbation. Finally, some numerical simulations are given to show the effectiveness and the benefits of the theoretical results. (English)
Keyword: complex delayed system
Keyword: uncertain
Keyword: stabilization
Keyword: intermittent control
Keyword: switched
MSC: 34C15
MSC: 34D06
MSC: 34D35
idZBL: Zbl 07031753
idMR: MR3893129
DOI: 10.14736/kyb-2018-5-0937
.
Date available: 2018-12-14T08:08:04Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147536
.
Reference: [1] Arefi, M. M.: Adaptive robust stabilization of Rossler system with time-varying mismatched parameters via scalar input..J. Comput. Nonlinear Dynamics 11 (2016), 041024-6. 10.1115/1.4033383
Reference: [2] Cai, S., Zhou, P., Liu, Z.: Pinning synchronization of hybrid-coupled directed delayed dynamical network via intermittent control..Chaos 24 (2014), 033102. MR 3404400, 10.1063/1.4886186
Reference: [3] Carr, T. W., Schwartz, I. B.: Controlling the unstable steady state in a multimode laser..Phys. Rev. E 51 (1995), 5109-5111. 10.1103/physreve.51.5109
Reference: [4] Fang, T., Sun, J.: Stability analysis of complex-valued impulsive system..IET Control Theory Appl. 7 (2013), 1152-1159. MR 3113222, 10.1049/iet-cta.2013.0116
Reference: [5] Fang, T., Sun, J.: Stability of complex-valued impulsive and switching system and application to the Lü system..Nonlinear Analysis: Hybrid Systems 14 (2014), 38-46. MR 3228049, 10.1016/j.nahs.2014.04.004
Reference: [6] Fowler, A. C., Gibbon, J. D., McGuinness, M. J.: The complex Lorenz equations..Physica D 4 (1982), 139-163. Zbl 1194.37039, MR 0653770, 10.1016/0167-2789(82)90057-4
Reference: [7] Han, Q. L.: New delay-dependent synchronization criteria for Lur'e systems using time delay feedback control..Physics Lett. A 360 (2007), 563-569. Zbl 1236.93072, 10.1016/j.physleta.2006.08.076
Reference: [8] Huang, T. W., Li, C. D., Liu, X.: Synchronization of chaotic systems with delay using intermittent linear state feedback..Chaos 18 (2008), 033122. MR 2478154, 10.1063/1.2967848
Reference: [9] Li, C. D., Liao, X. F., Huang, T. W.: Exponential stabilization of chaotic systems with delay by periodically intermittent control..Chaos 17 (2007), 013103. MR 2319024, 10.1063/1.2430394
Reference: [10] Li, N., Sun, H., Zhang, Q: Exponential synchronization of united complex dynamical networks with multi-links via adaptive periodically intermittent control..IET Control Theory Appl. 159 (2013), 1725-1736. MR 3115117, 10.1049/iet-cta.2013.0159
Reference: [11] Liang, Y., Wang, X.: Synchronization in complex networks with non-delay and delay couplings via intermittent control with two switched periods..Physica A 395 (2014), 434-444. MR 3133676, 10.1016/j.physa.2013.10.002
Reference: [12] Liu, X., Chen, T.: Synchronization of complex networks via aperiodically intermittent pinning control..IEEE Trans. Automat. Control 60 (2015), 3316-3321. MR 3432701, 10.1109/tac.2015.2416912
Reference: [13] Liu, X., Chen, T.: Synchronization of nonlinear coupled networks via a periodically intermittent pinning control..IEEE Trans. Neural Networks Learning Systems 26 (2015), 113-126. MR 3449567, 10.1109/TNNLS.2014.2311838
Reference: [14] Lu, J., Ho, D. W. C., Cao, J.: A unified synchronization criterion for impulsive dynamical networks..Automatica 46 (2010), 1215-1221. MR 2877227, 10.1016/j.automatica.2010.04.005
Reference: [15] Luo, C., Wang, X.: Chaos in the fractional-order complex Lorenz system and its synchronization..Nonlinear Dynamics 71 (2013), 241-257. MR 3010577, 10.1007/s11071-012-0656-z
Reference: [16] Mahmoud, E. E.: Dynamics and synchronization of new hyperchaotic complex Lorenz system..Math. Computer Modelling 55 (2012), 1951-1962. MR 2899141, 10.1016/j.mcm.2011.11.053
Reference: [17] Mahmoud, G. M., Mahmoud, E. E., Arafa, A. A.: On modified time delay hyperchaotic complex Lü system..Nonlinear Dynamics 80 (2015), 855-869. MR 3324303, 10.1007/s11071-015-1912-9
Reference: [18] Mahmoud, G. M., Bountis, T., Mahmoud, E. E.: Active control and global synchronization for complex Chen and Lü systems..Int. J. Bifurcation Chaos 17 (2007), 4295-4308. MR 2394229, 10.1142/s0218127407019962
Reference: [19] Morgül, Ö.: On the stability of delayed feedback controllers..Phys. Lett. A 314 (2003), 278-285. MR 2008693, 10.1016/s0375-9601(03)00866-1
Reference: [20] Ning, C. Z., Haken, H.: Detuned lasers and the complex Lorenz equations: subcritical and supercritical Hopf bifurcations..Phys. Rev. A 41 (1990), 3826-3837. 10.1103/physreva.41.3826
Reference: [21] Ott, E., Grebogi, C., Yorke, J.: Controlling chaos..Phys. Rev. Lett. 64 (1990), 1196. Zbl 0964.37502, MR 1041523, 10.1103/physrevlett.64.1196
Reference: [22] Pecora, L. M., Carroll, T. L.: Synchronization in chaotic systems..Phys. Rev. Lett. 64 (1990), 821-824. Zbl 1098.37553, MR 1038263, 10.1103/physrevlett.64.821
Reference: [23] Qiu, J., Cheng, L., X, Chen, Lu, J., He, H.: Semi-periodically intermittent control for synchronization of switched complex networks:a mode-dependent average dwell time approach..Nonlinear Dynamics {\mi83} (2016), 1757-1771. MR 3449506, 10.1007/s11071-015-2445-y
Reference: [24] Starrett, J.: Control of chaos by occasional bang-bang..Phys. Rev. E 67 (2003), 036203. 10.1103/PhysRevE.67.036203
Reference: [25] Sun, W., Wang, S., Wang, G., Wu, Y.: Lag synchronization via pinning control between two coupled networks..Nonlinear Dynamics 79 (2015), 2659-2666. MR 3317469, 10.1007/s11071-014-1838-7
Reference: [26] Wang, X., He, Y.: Projective synchronization of fractional order chaotic system based on linear separation..Phys. Lett. A 372 (2008), 435-441. 10.1016/j.physleta.2007.07.053
Reference: [27] Xia, W., Cao, J.: Pinning synchronization of delayed dynamical networks via periodically intermittent control..Chaos 19 (2009), 013120. MR 2513764, 10.1063/1.3071933
Reference: [28] Yang, Z., Xu, D.: Stability analysis and design of impulsive control systems with time delay..IEEE Trans. Automat. Control 52 (2007), 1448-1454. MR 2342720, 10.1109/tac.2007.902748
Reference: [29] Zhang, D. W., Han, Q. L., Jia, X. C.: Network-based output tracking control for a class of T-S fuzzy systems that can not be stabilized by nondelayed output feedback controllers..IEEE Trans. Cybernet. 45 (2015), 1511-1524. MR 1859200, 10.1109/tcyb.2014.2354421
Reference: [30] Zhang, D. W., Han, Q. L., Jia, X. C.: Network-based output tracking control for T-S fuzzy systems using an event-triggered communication scheme..Fuzzy Sets Systems 273 (2015), 26-48. MR 3347269, 10.1016/j.fss.2014.12.015
Reference: [31] Zheng, S.: Adaptive-impulsive projective synchronization of drive-response delayed complex dynamical networks with time-varying coupling..Nonlinear Dynamics 67 (2012), 2621-2630. Zbl 1243.93042, MR 2881569, 10.1007/s11071-011-0175-3
Reference: [32] Zheng, S.: Parameter identification and adaptive impulsive synchronization of uncertain complex-variable chaotic systems..Nonlinear Dynamics 74 (2013), 957-967. Zbl 1306.34069, MR 3127104, 10.1007/s11071-013-1015-4
Reference: [33] Zheng, S.: Stability of uncertain impulsive complex-variable chaotic systems with time-varying delays..ISA Trans. 58 (2015), 20-26. 10.1016/j.isatra.2015.05.016
Reference: [34] Zheng, S.: Synchronization analysis of time delay complex-variable chaotic systems with discontinuous coupling..J. Franklin Inst. 353 (2016), 1460-1477. MR 3472559, 10.1016/j.jfranklin.2016.02.006
Reference: [35] Zheng, S.: Further Results on the impulsive synchronization of uncertain complex-variable chaotic delayed systems..Complexity 21 (2016), 131-142. MR 3508409, 10.1002/cplx.21641
Reference: [36] Zochowski, M.: Intermittent dynamical control..Physica D 145 (2000), 181-190. 10.1016/s0167-2789(00)00112-3
.

Files

Files Size Format View
Kybernetika_54-2018-5_5.pdf 585.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo