Previous |  Up |  Next

Article

Title: Sliding-mode pinning control of complex networks (English)
Author: Suarez, Oscar J.
Author: Vega, Carlos J.
Author: Elvira-Ceja, Santiago
Author: Sanchez, Edgar N.
Author: Rodriguez, David I.
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 54
Issue: 5
Year: 2018
Pages: 1011-1032
Summary lang: English
.
Category: math
.
Summary: In this paper, a novel approach for controlling complex networks is proposed; it applies sliding-mode pinning control for a complex network to achieve trajectory tracking. This control strategy does not require the network to have the same coupling strength on all edges; and for pinned nodes, the ones with the highest degree are selected. The illustrative example is composed of a network of 50 nodes; each node dynamics is a Chen chaotic attractor. Two cases are presented. For the first case the whole network tracks a reference for each one of the states; afterwards, the second case uses the backstepping technique to track a desired trajectory for only one state. Tracking performance and dynamical behavior of the controlled network are illustrated via simulations. (English)
Keyword: complex network
Keyword: pinning control
Keyword: sliding mode
Keyword: backstepping
Keyword: trajectory tracking
MSC: 05C82
MSC: 93C10
MSC: 93D05
idZBL: Zbl 07031757
idMR: MR3893133
DOI: 10.14736/kyb-2018-5-1011
.
Date available: 2018-12-14T08:15:06Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147540
.
Reference: [1] Barabási, A. L., Albert, R.: Emergence of scaling in random networks..Science 286 (1999), 5439, 509-512. Zbl 1226.05223, MR 2091634, 10.1126/science.286.5439.509
Reference: [2] Bhat, S. P., Bernstein, D. U.: Finite-time stability of continuous autonomous systems..SIAM J. Control Optim. 38 (2000), 3, 751-766. Zbl 0945.34039, MR 1756893, 10.1137/s0363012997321358
Reference: [3] Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D. U.: Complex networks: Structure and dynamics..Phys. Rep. 424 (2006), 4, 175-308. MR 2193621, 10.1016/j.physrep.2005.10.009
Reference: [4] Chen, G., Ueta, T.: Yet another chaotic attractor..Int. J. Bifurcation Chaos 9 (1999), 7, 1465-1466. Zbl 0962.37013, MR 1729683, 10.1142/S0218127499001024
Reference: [5] Chen, G., Wang, X., Li, X.: Fundamentals of Complex Networks: Models, Structures and Dynamics..John Wiley and Sons, Singapore 2014.
Reference: [6] Chen, T., Liu, X., Lu, W.: Pinning complex networks by a single controller..IEEE Trans. Circuits Systems I: Regular Papers 54 (2007), 6, 1317-1326 MR 2370589, 10.1109/TCSI.2007.895383
Reference: [7] Drakunov, S., Izosimov, D., Lukyanov, A., Utkin, V. A., Utkin, V. I.: The block control principle. 1..Automat. Remote Control 51 (1990), 5, 601-608. MR 1071018
Reference: [8] Emelyanov, S. V.: Variable Structure Control Systems..Nouka, Moscow 1967. MR 0243850
Reference: [9] Erdos, P., Rényi, A.: On the evolution of random graphs..Inst. Math. Hungar. Acad. Sci. 5 (1960), 1, 17-60. MR 0125031
Reference: [10] Hu, G., Qu, Z.: Controlling spatiotemporal chaos in coupled map lattice systems..Phys. Rev. Lett. 72 (1994), 1, 68. 10.1103/physrevlett.72.68
Reference: [11] Guldner, J., Utkin, V. I.: Tracking the gradient of artificial potential fields: Sliding mode control for mobile robots..Int. J. Control 63 (1996), 3, 417-432. MR 1650715, 10.1080/00207179608921850
Reference: [12] Guldner, J., Utkin, V. I.: The chattering problem in sliding mode systems..In: 14th Intenational Symposium of Mathematical Theory of Networks and Systems, (MTNS), Perpignan 2000.
Reference: [13] Khalil, H. K.: Noninear Systems..Prentice-Hall, New Jersey 2002.
Reference: [14] Khanzadeh, A., Pourgholi, M.: Fixed-time sliding mode controller design for synchronization of complex dynamical networks..Nonlinear Dynamics 88 (2017), 4, 2637-2649. MR 3656544, 10.1007/s11071-017-3400-x
Reference: [15] Krstic, M., Kanellakopoulos, I., Kokotovic, P. V.: Nonlinear and Adaptive Control Design..Wiley, 1995.
Reference: [16] Lee, H., Utkin, V. I.: Chattering suppression methods in sliding mode control systems..Ann. Rev. Control 31 (2007), 2, 179-188. 10.1016/j.arcontrol.2007.08.001
Reference: [17] Li, X., Chen, G.: Synchronization and desynchronization of complex dynamical networks: an engineering viewpoint..IEEE Trans. Circuits and Systems I: Fundamental Theory Appl. 50 (2003), 11, 1381-1390. MR 2024565, 10.1109/tcsi.2003.818611
Reference: [18] Li, X., Wang, X., Chen, G.: Pinning a complex dynamical network to its equilibrium..IEEE Trans. Circuits Systems I: Regular Papers 51 (2004), 10, 2074-2087. MR 2096915, 10.1109/tcsi.2004.835655
Reference: [19] Lorenz, E.: Deterministic nonperiodic flow..J. Atmospher. Sci. 20 (1963), 2, 130-141. 10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2
Reference: [20] Pourmahmood, M., Khanmohammadi, S., Alizadeh, G.: Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique..Appl. Math. Modell. 35 (2011), 3080-3091. MR 2776263, 10.1016/j.apm.2010.12.020
Reference: [21] Roy, R., Murphy, T., Maier, T., Gills, Z., Hunt, E.: Dynamical control of a chaotic laser: Experimental stabilization of a globally coupled system..Phys. Rev. Lett. 68 (1992), 9, 1259-1262. 10.1103/physrevlett.68.1259
Reference: [22] Sanchez, E. N., Rodriguez, D. I.: Inverse optimal pinning control for complex networks of chaotic systems..Int. Bifurcation Chaos 25, (2015), 02, 1550031. MR 3316325, 10.1142/s0218127415500315
Reference: [23] Sira-Ramírez, H.: Sliding Mode Control: The Delta-Sigma Modulation Approach..Birkhauser, Basel 2015. MR 3362896, 10.1007/978-3-319-17257-6
Reference: [24] Sun, J., Shen, Y., Wang, X., Chen, J.: Finite-time combination-combination synchronization of four different chaotic systems with unknown parameters via sliding mode control..Nonlinear Dynamics 76 (2014), 1, 383-397. MR 3189178, 10.1007/s11071-013-1133-z
Reference: [25] Su, H., Xiaofan, W.: Pinning Control of Complex Networked Systems: Synchronization, Consensus and Flocking of Networked Systems via Pinning..Springer-Verlag, Berlin 2013. MR 3014429
Reference: [26] Utkin, V. I., Lee, H.: Chattering problem in sliding mode control systems..In: Variable Structure Systems. VSS'06. International Workshop on Variable Structure Systems, (2006), pp. 346-350. 10.1109/vss.2006.1644542
Reference: [27] Utkin, V. I.: Sliding Modes and their Application in Variable Structure Systems..Mir Publishers, Moscow 1978. MR 0479534
Reference: [28] Utkin, V. I.: Sliding Modes in Control and Optimization..Springer-Verlag, Berlin 2013. Zbl 0748.93044, MR 1295845
Reference: [29] Watts, D., Duncan, J., Strogatz, S.: Collective dynamics of 'small-world' networks..Nature 393 (1998), 6684, 440-442. MR 1716136, 10.1038/30918
Reference: [30] Wang, X., Cheng, G.: Pinning control of scale-free dynamical networks..Physica A: Statist. Mech. Appl. 310 (2002), 3, 521-531. MR 1946327, 10.1016/s0378-4371(02)00772-0
Reference: [31] Vaidyanathan, S., Sampath, S.: Global chaos synchronization of hyperchaotic Lorenz systems by sliding mode control..In: Advances in Digital Image Processing and Information Technology, Springer 2011, pp. 156-164. 10.1007/978-3-642-24055-3\_16
Reference: [32] Yau, H.: Design of adaptive sliding mode controller for chaos synchronization with uncertainties..Chaos, Solitons Fractals 22 (2004), 341-347. MR 2060871, 10.1016/j.chaos.2004.02.004
Reference: [33] Yu, W., Chen, G., Lü, J.: On pinning synchronization of complex dynamical networks..Automatica 45 (2009), 2, 429-435. Zbl 1158.93308, MR 2527339, 10.1016/j.automatica.2008.07.016
Reference: [34] Zhang, M., Xu, M., Han, M.: Finite-time combination synchronization of uncertain complex networks by sliding mode control..Inform. Cybernet. Comput. Social Systems (ICCSS), (2017), 406-411. 10.1109/iccss.2017.8091448
.

Files

Files Size Format View
Kybernetika_54-2018-5_9.pdf 5.371Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo