Previous |  Up |  Next

Article

Title: On finite time stability with guaranteed cost control of uncertain linear systems (English)
Author: Qayyum, Atif
Author: Pironti, Alfredo
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 54
Issue: 5
Year: 2018
Pages: 1071-1090
Summary lang: English
.
Category: math
.
Summary: This paper deals with the design of a robust state feedback control law for a class of uncertain linear time varying systems. Uncertainties are assumed to be time varying, in one-block norm bounded form. The proposed state feedback control law guarantees finite time stability and satisfies a given bound for an integral quadratic cost function. The contribution of this paper is to provide a sufficient condition in terms of differential linear matrix inequalities for the existence and the construction of the proposed robust control law. In particular, the construction of the feedback control law is brought back to a feasibility problem which can be solved inside the convex optimization framework. The effectiveness of the proposed approach is shown by means of the results obtained on a numerical and a physical example. (English)
Keyword: differential LMIs
Keyword: finite time stability
Keyword: guaranteed cost control
Keyword: robust control
Keyword: state feedback control
MSC: 93B50
MSC: 93B51
MSC: 93D15
idZBL: Zbl 07031760
idMR: MR3893136
DOI: 10.14736/kyb-2018-5-1071
.
Date available: 2018-12-14T08:20:05Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147543
.
Reference: [1] Amato, F., Ambrosino, R., Ariola, M., Cosentino, C., Tommasi, G. De: Finite-Time Stability and Control..Springer Verlag, 2014. MR 3157178
Reference: [2] Amato, F., Ambrosino, R., Ariola, M., Tommasi, G. De: Robust finite-time stability of impulsive dynamical linear systems subject to norm-bounded uncertainties..Int. J. Robust Nonlinear Control 21 (2011), 1080-1092. MR 2839840, 10.1002/rnc.1620
Reference: [3] Amato, F., Ariola, M., Cosentino, C.: Finite-time stability of linear time-varying systems: Analysis and controller design..IEEE Trans. Automat. Control 55 (2010), 4, 1003-1008. MR 2654445, 10.1109/tac.2010.2041680
Reference: [4] Amato, F., Ariola, M., Cosentino, C.: Robust finite-time stabilisation of uncertain linear systems..Int. J. Control 84 (2011), 12, 2117-2127. MR 2869612, 10.1080/00207179.2011.633230
Reference: [5] Amato, F., Ariola, M., Dorato, P.: Finite-time control of linear systems subject to parametric uncertanties and disturbances..Automatica 37 (2001), 1459-1463. 10.1016/s0005-1098(01)00087-5
Reference: [6] Amato, F., Cosentino, C., Tommasi, G. De, Pironti, A.: New conditions for the finite-time stability of stochastic linear time-varying systems..In: Proc. European Control Conference, (2015), pp. 1213-1218. 10.1109/ecc.2015.7330706
Reference: [7] Amato, F., Cosentino, C., Tommasi, G. De, Pironti, A.: The mixed robust $H_\infty$/FTS control problem..Asian J. Control 18 (2016), 3, 828-841. MR 3502465, 10.1002/asjc.1196
Reference: [8] Amato, F., Tommasi, G. De, Pironti, A.: Necessary and sufficient conditions for finite-time stability of impulsive dynamical linear systems..Automatica 49 (2013), 8, 2546-2550. MR 3072649, 10.1016/j.automatica.2013.04.004
Reference: [9] Amato, F., Tommasi, G. De, Mele, A., Pironti, A.: New conditions for annular finite-time stability of linear systems..In: IEEE 55th Conference on Decision and Control (2016), pp. 4925-4930. 10.1109/cdc.2016.7799022
Reference: [10] Ambrosino, R., Calabrese, F., Cosentino, C., Tommasi, G. De: Sufficient conditions for finite-time stability of impulsive dynamical systems..IEEE Trans. Automat. Control 54 (2009), 4, 861-865. MR 2514824, 10.1109/tac.2008.2010965
Reference: [11] Anderson, B. D .O., Moore, J. B.: Optimal Control: Linear Quadratic Methods..Englewood Cliffs, Prentice-Hall, NJ 1989. MR 0335000
Reference: [12] Chen, J., Li, Q., Liu, C.: Guaranteed cost control of uncertain impulsive switched systems with nonlinear disturbances..In: UKACC International Conference on Control, (2014). 10.1109/control.2014.6915131
Reference: [13] Corless, M.: Variable Structure and Lyapunov Control, chapter Robust stability analysis and controller design with quadratic Lyapunov functions..Springer Verlag, (A. S. I. Zinober, ed.), London (1994). MR 1257919, 10.1007/bfb0033675
Reference: [14] Dorato, P.: Short time stability in linear time-varying systems..In: Proc. IRE International Convention Record Part 4, (1961), pp. 83-87.
Reference: [15] Golestani, M., Mobayen, S., Tchier, F.: Adaptive finite-time tracking control of uncertain non-linear n-order systems with unmatched uncertainties..IET Control Theory Appl. 10 (2016), 1675-1683. MR 3585276, 10.1049/iet-cta.2016.0163
Reference: [16] Haddad, W. M., L'Afflitto, A.: Finite-time stabilization and optimal feedback control..IEEE Trans. Automat. Control 61 (2016), 4, 1069-1074. MR 3483539, 10.1109/tac.2015.2454891
Reference: [17] Li, L., Yan, G.: Sufficient optimality conditions for impulsive and switching optimal control problems..In: Proc. 34th Chinese Control Conference, (2015). 10.1109/chicc.2015.7260012
Reference: [18] Mastellone, S., Dorato, P., Abdallah, C. T.: Finite-time stability of discrete-time nonlinear systems: analysis and design..In: Proc. IEEE Conference on Decision and Control, (2004), pp. 2572-2577. 10.1109/cdc.2004.1428845
Reference: [19] Mobayen, S., Tchier, F.: A new LMI-based robust finite-time sliding mode control strategy for a class of uncertain nonlinear systems..Kybernetika 51 (2015), 1035-1048. MR 3453684, 10.14736/kyb-2015-6-1035
Reference: [20] Moheimani, S. O. R., Petersen, I. R.: Optimal guaranteed cost control of uncertain systems via static and dynamic output feedback..Automatica 32 (1996), 4, 575-579. MR 1386704, 10.1016/0005-1098(95)00178-6
Reference: [21] Petersen, I. R., McFarlane, D. C.: Optimal guaranteed cost control of uncertain linear systems..In: American Control Conference (1992), pp. 2929-2930. MR 1293449, 10.23919/acc.1992.4792682
Reference: [22] Petersen, I. R., McFarlane, D. C., Rotea, M. A.: Optimal guaranteed cost control of discrete-time uncertain linear systems..Int. J. Robust Nonlinear Control 8 (1998), 7, 649-657. MR 1632206, 10.1002/(sici)1099-1239(19980715)8:8<649::aid-rnc334>3.3.co;2-y
Reference: [23] Qayyum, A.: Finite time output regulation of sampled data linear systems through impulsive observer..In: Proc. SICE International Symposium on Control Systems (2017), pp. 62-66.
Reference: [24] Qayyum, A., Tommasi, G. De: Finite-time state estimation of sampled output impulsive dynamical linear system..In: Proc. 24th Mediterranean Conference on Control and Automation (2016), pp. 154-158. 10.1109/MED.2016.7535975
Reference: [25] Qayyum, A., Malik, M. B., Tommasi, G. De, Pironti, A.: Finite time estimation of a linear system based on sampled measurement through impulsive observer..In: Proc. 28th Chinese Control and Decision Conference (2016), pp. 978-981. 10.1109/CCDC.2016.7531125
Reference: [26] Qayyum, A., Pironti, A.: Finite time stability with guaranteed cost control for linear systems..In: Proc. 21st International Conference on System Theory, Control and Computing (2017). 10.1109/ICSTCC.2017.8107124
Reference: [27] Qayyum, A., Salman, M., Malik, M. B.: Receding horizon observer for linear time-varying systems..In: Trans. Inst. Measurement and Control (2018). 10.1177/0142331218805153
Reference: [28] Ren, J., Zhang, Q.: Robust normalization and guaranteed cost control for a class of uncertain descriptor systems..Automatica 48 (2012), 5, 1693-1697. MR 2950418, 10.1016/j.automatica.2012.05.038
Reference: [29] Vaseghi, B., Pourmina, M. A., Mobayen, S.: Finite-time chaos synchronization and its application in wireless sensor networks..In: Trans. Inst. Measurement and Control (2017). 10.1177/0142331217731617
Reference: [30] Xu, H. L., Teo, K. L., Liu, X. Z.: Robust stability analysis of guaranteed cost control for impulsive switched systems..IEEE Trans. Automat. Contrpl 38 (2008), 5, 1419-1422. 10.1109/tsmcb.2008.925747
Reference: [31] Yan, Z., Zhang, G., Zhang, W.: Finite-time stability and stabilization of linear ito stochastic systems with state and control dependent noise..Asian J. Control 15 (2013), 270-281. MR 3015775, 10.1002/asjc.531
Reference: [32] Yan, Z., Zhang, W., Zhang, G.: Finite-time stability and stabilization of it's stochastic systems with markovian switching: Mode-dependent parameter approach..IEEE Trans. Automat. Control 60 (2015), 9, 2428-2433. MR 3393133, 10.1109/tac.2014.2382992
Reference: [33] Zhao, S., Sun, J., Liu, L.: Finite-time stability of linear time-varying singular systems with impulsive effects..Int. J. Control 81 (2008), 11, 1824-1829. MR 2462577, 10.1080/00207170801898893
.

Files

Files Size Format View
Kybernetika_54-2018-5_12.pdf 827.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo