Previous |  Up |  Next

Article

Title: Space-time discontinuous Galerkin method for the solution of fluid-structure interaction (English)
Author: Balázsová, Monika
Author: Feistauer, Miloslav
Author: Horáček, Jaromír
Author: Hadrava, Martin
Author: Kosík, Adam
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 63
Issue: 6
Year: 2018
Pages: 739-764
Summary lang: English
.
Category: math
.
Summary: The paper is concerned with the application of the space-time discontinuous Galerkin method (STDGM) to the numerical solution of the interaction of a compressible flow and an elastic structure. The flow is described by the system of compressible Navier-Stokes equations written in the conservative form. They are coupled with the dynamic elasticity system of equations describing the deformation of the elastic body, induced by the aerodynamical force on the interface between the gas and the elastic structure. The domain occupied by the fluid depends on time. It is taken into account in the Navier-Stokes equations rewritten with the aid of the arbitrary Lagrangian-Eulerian (ALE) method. The resulting coupled system is discretized by the STDGM using piecewise polynomial approximations of the sought solution both in space and time. The developed method can be applied to the solution of the compressible flow for a wide range of Mach numbers and Reynolds numbers. For the simulation of elastic deformations two models are used: the linear elasticity model and the nonlinear neo-Hookean model. The main goal is to show the robustness and applicability of the method to the simulation of the air flow in a simplified model of human vocal tract and the flow induced vocal folds vibrations. It will also be shown that in this case the linear elasticity model is not adequate and it is necessary to apply the nonlinear model. (English)
Keyword: nonstationary compressible Navier-Stokes equations
Keyword: time-dependent domain
Keyword: arbitrary Lagrangian-Eulerian method
Keyword: linear and nonlinear dynamic elasticity
Keyword: space-time discontinuous Galerkin method
Keyword: vocal folds vibrations
MSC: 65M60
MSC: 65M99
MSC: 74B05
MSC: 74B20
MSC: 74F10
idZBL: Zbl 07031685
idMR: MR3893008
DOI: 10.21136/AM.2018.0139-18
.
Date available: 2019-01-03T09:13:44Z
Last updated: 2021-01-04
Stable URL: http://hdl.handle.net/10338.dmlcz/147566
.
Reference: [1] Akrivis, G., Makridakis, C.: Galerkin time-stepping methods for nonlinear parabolic equations.M2AN, Math. Model. Numer. Anal. 38 (2004), 261-289. Zbl 1085.65094, MR 2069147, 10.1051/m2an:2004013
Reference: [2] Badia, S., Codina, R.: On some fluid-structure iterative algorithms using pressure segregation methods. Application to aeroelasticity.Int. J. Numer. Methods Eng. 72 (2007), 46-71. Zbl 1194.74361, MR 2353132, 10.1002/nme.1998
Reference: [3] Balázsová, M., Feistauer, M.: On the stability of the ALE space-time discontinuous Galerkin method for nonlinear convection-diffusion problems in time-dependent domains.Appl. Math., Praha 60 (2015), 501-526. Zbl 1363.65157, MR 3396478, 10.1007/s10492-015-0109-3
Reference: [4] Balázsová, M., Feistauer, M., Hadrava, M., Kosík, A.: On the stability of the space-time discontinuous Galerkin method for the numerical solution of nonstationary nonlinear convection-diffusion problems.J. Numer. Math. 23 (2015), 211-233. Zbl 1327.65168, MR 3420382, 10.1515/jnma-2015-0014
Reference: [5] Boffi, D., Gastaldi, L., Heltai, L.: Numerical stability of the finite element immersed boundary method.Math. Models Methods Appl. Sci. 17 (2007), 1479-1505. Zbl 1186.76661, MR 2359913, 10.1142/S0218202507002352
Reference: [6] Bonet, J., Wood, R. D.: Nonlinear Continuum Mechanics for Finite Element Analysis.Cambridge University Press, Cambridge (2008). Zbl 1142.74002, MR 2398580, 10.1017/CBO9780511755446
Reference: [7] Bonito, A., Kyza, I., Nochetto, R. H.: Time-discrete higher-order ALE formulations: stability.SIAM J. Numer. Anal. 51 (2013), 577-604. Zbl 1267.65114, MR 3033024, 10.1137/120862715
Reference: [8] Česenek, J., Feistauer, M.: Theory of the space-time discontinuous Galerkin method for nonstationary parabolic problems with nonlinear convection and diffusion.SIAM J. Numer. Anal. 50 (2012), 1181-1206. Zbl 1312.65157, MR 2970739, 10.1137/110828903
Reference: [9] Česenek, J., Feistauer, M., Horáček, J., Kučera, V., Prokopová, J.: Simulation of compressible viscous flow in time-dependent domains.Appl. Math. Comput. 219 (2013), 7139-7150. Zbl 06299746, MR 3030556, 10.1016/j.amc.2011.08.077
Reference: [10] Česenek, J., Feistauer, M., Kosík, A.: DGFEM for the analysis of airfoil vibrations induced by compressible flow.ZAMM, Z. Angew. Math. Mech. 93 (2013), 387-402. Zbl 1277.74026, MR 3069914, 10.1002/zamm.201100184
Reference: [11] Chrysafinos, K., Walkington, N. J.: Error estimates for the discontinuous Galerkin methods for parabolic equations.SIAM J. Numer. Anal. 44 (2006), 349-366. Zbl 1112.65086, MR 2217386, 10.1137/030602289
Reference: [12] Ciarlet, P. G.: The Finite Element Method for Elliptic Problems.Studies in Mathematics and Its Applications 4, North-Holland Publishing Company, Amsterdam (1978). Zbl 0383.65058, MR 0520174, 10.1016/S0168-2024(08)70174-7
Reference: [13] Ciarlet, P. G.: Mathematical Elasticity. Volume I: Three-Dimensional Elasticity.Studies in Mathematics and Its Applications 20, North-Holland, Amsterdam (1988). Zbl 0648.73014, MR 0936420, 10.1016/S0168-2024(08)70050-X
Reference: [14] Davis, T. A., Duff, I. S.: A combined unifrontal/multifrontal method for unsymmetric sparse matrices.ACM Trans. Math. Softw. 25 (1999), 1-20. Zbl 0962.65027, MR 1697461, 10.1145/305658.287640
Reference: [15] Deuflhard, P.: Newton Methods for Nonlinear Problems. Affine Invariance and Adaptive Algorithms.Springer Series in Computational Mathematics 35, Springer, Berlin (2004). Zbl 1056.65051, MR 2893875, 10.1007/978-3-642-23899-4
Reference: [16] Dolejší, V., Feistauer, M.: Discontinuous Galerkin Method. Analysis and Applications to Compressible Flow.Springer Series in Computational Mathematics 48, Springer, Cham (2015). Zbl 06467550, MR 3363720, 10.1007/978-3-319-19267-3
Reference: [17] Dolejší, V., Feistauer, M., Schwab, C.: On some aspects of the discontinuous Galerkin finite element method for conservation laws.Math. Comput. Simul. 61 (2003), 333-346. Zbl 1013.65108, MR 1984135, 10.1016/S0378-4754(02)00087-3
Reference: [18] Donea, J., Giuliani, S., Halleux, J. P.: An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions.Comput. Methods Appl. Mech. Eng. 33 (1982), 689-723. Zbl 0508.73063, 10.1016/0045-7825(82)90128-1
Reference: [19] Eriksson, K., Estep, D., Hansbo, P., Johnson, C.: Computational Differential Equations.Cambridge University Press, Cambridge (1996). Zbl 0946.65049, MR 1414897
Reference: [20] Eriksson, K., Johnson, C.: Adaptive finite element methods for parabolic problems. I. A linear model problem.SIAM J. Numer. Anal. 28 (1991), 43-77. Zbl 0732.65093, MR 1083324, 10.1137/0728003
Reference: [21] Estep, D., Larsson, S.: The discontinuous Galerkin method for semilinear parabolic problems.RAIRO, Modélisation Math. Anal. Numér. 27 (1993), 35-54. Zbl 0768.65065, MR 1204627, 10.1051/m2an/1993270100351
Reference: [22] Feistauer, M., Česenek, J., Horáček, J., Kučera, V., Prokopová, J.: DGFEM for the numerical solution of compressible flow in time dependent domains and applications to fluid-structure interaction.Proceedings of the 5th European Conference on Computational Fluid Dynamics ECCOMAS CFD 2010 J. C. F. Pereira, A. Sequeira Lisbon, Portugal (published ellectronically) (2010). MR 2647255
Reference: [23] Feistauer, M., Felcman, J., Straškraba, I.: Mathematical and Computational Methods for Compressible Flow.Numerical Mathematics and Scientific Computation, Oxford University Press, Oxford (2003). Zbl 1028.76001, MR 2261900
Reference: [24] Feistauer, M., Hájek, J., Švadlenka, K.: Space-time discontinuous Galerkin method for solving nonstationary convection-diffusion-reaction problems.Appl. Math., Praha 52 (2007), 197-233. Zbl 1164.65469, MR 2316153, 10.1007/s10492-007-0011-8
Reference: [25] Feistauer, M., Hasnedlová-Prokopová, J., Horáček, J., Kosík, A., Kučera, V.: DGFEM for dynamical systems describing interaction of compressible fluid and structures.J. Comput. Appl. Math. 254 (2013), 17-30. Zbl 1290.65089, MR 3061063, 10.1016/j.cam.2013.03.028
Reference: [26] Feistauer, M., Horáček, J., Kučera, V., Prokopová, J.: On numerical solution of compressible flow in time-dependent domains.Math. Bohem. 137 (2012), 1-16. Zbl 1249.65196, MR 2978442
Reference: [27] Feistauer, M., Kučera, V.: On a robust discontinuous Galerkin technique for the solution of compressible flow.J. Comput. Phys. 224 (2007), 208-221. Zbl 1114.76042, MR 2322268, 10.1016/j.jcp.2007.01.035
Reference: [28] Feistauer, M., Kučera, V., Najzar, K., Prokopová, J.: Analysis of space-time discontinuous Galerkin method for nonlinear convection-diffusion problems.Numer. Math. 117 (2011), 251-288. Zbl 1211.65125, MR 2754851, 10.1007/s00211-010-0348-x
Reference: [29] Feistauer, M., Kučera, V., Prokopová, J.: Discontinuous Galerkin solution of compressible flow in time-dependent domains.Math. Comput. Simul. 80 (2010), 1612-1623. Zbl 05780120, MR 2647255, 10.1016/j.matcom.2009.01.020
Reference: [30] Fernández, M. Á., Moubachir, M.: A Newton method using exact jacobians for solving fluid-structure coupling.Comput. Struct. 83 (2005), 127-142. 10.1016/j.compstruc.2004.04.021
Reference: [31] Formaggia, L., Nobile, F.: A stability analysis for the arbitrary Lagrangian Eulerian formulation with finite elements.East-West J. Numer. Math. 7 (1999), 105-131. Zbl 0942.65113, MR 1699243
Reference: [32] Gastaldi, L.: A priori error estimates for the arbitrary Lagrangian Eulerian formulation with finite elements.East-West J. Numer. Math. 9 (2001), 123-156. Zbl 0988.65082, MR 1836870, 10.1515/JNMA.2001.123
Reference: [33] Hasnedlová, J., Feistauer, M., Horáček, J., Kosík, A., Kučera, V.: Numerical simulation of fluid-structure interaction of compressible flow and elastic structure.Computing 95 (2013), S343--S361. MR 3054377, 10.1007/s00607-012-0240-x
Reference: [34] Khadra, K., Angot, P., Parneix, S., Caltagirone, J.-P.: Fictiuous domain approach for numerical modelling of Navier-Stokes equations.Int. J. Numer. Methods Fluids 34 (2000), 651-684. Zbl 1032.76041, 10.1002/1097-0363(20001230)34:8<651::AID-FLD61>3.0.CO;2-D
Reference: [35] Richter, T. M.: Goal-oriented error estimation for fluid-structure interaction problems.Comput. Methods Appl. Mech. Eng. 223/224 (2012), 28-42. Zbl 1253.74037, MR 2917479, 10.1016/j.cma.2012.02.014
Reference: [36] Schötzau, D. M.: hp-DGFEM for parabolic evolution problems: Applications to diffusion and viscous incompressible fluid flow.Thesis (Dr.Sc.Math)--Eidgenoessische Technische Hochschule Zürich, ProQuest Dissertations Publishing (1999). MR 2715264
Reference: [37] Schötzau, D., Schwab, C.: An $hp$ a priori error analysis of the DG time-stepping method for initial value problems.Calcolo 37 (2000), 207-232. Zbl 1012.65084, MR 1812787, 10.1007/s100920070002
Reference: [38] Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems.Springer Series in Computational Mathematics 25 Springer, Berlin (2006). Zbl 1105.65102, MR 2249024, 10.1007/3-540-33122-0
Reference: [39] Vlasák, M., Dolejší, V., Hájek, J.: A priori error estimates of an extrapolated space-time discontinuous Galerkin method for nonlinear convection-diffusion problems.Numer. Methods Partial Differ. Equations 27 (2011), 1456-1482. Zbl 1237.65105, MR 2838303, 10.1002/num.20591
Reference: [40] Yang, Z., Mavriplis, D. J.: Unstructured dynamic meshes with higher-order time integration schemes for the unsteady Navier-Stokes equations.43rd AIAA Aerospace Sciences Meeting and Exhibit Reno (2005), AIAA Paper, 1222. 10.2514/6.2005-1222
.

Files

Files Size Format View
AplMat_63-2018-6_8.pdf 911.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo