Previous |  Up |  Next

Article

Title: Robust recursive estimation of GARCH models (English)
Author: Cipra, Tomáš
Author: Hendrych, Radek
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 54
Issue: 6
Year: 2018
Pages: 1138-1155
Summary lang: English
.
Category: math
.
Summary: The robust recursive algorithm for the parameter estimation and the volatility prediction in GARCH models is suggested. It seems to be useful for various financial time series, in particular for (high-frequency) log returns contaminated by additive outliers. The proposed procedure can be effective in the risk control and regulation when the prediction of volatility is the main concern since it is capable to distinguish and correct outlaid bursts of volatility. This conclusion is demonstrated by simulations and real data examples presented in the paper. (English)
Keyword: GARCH model
Keyword: Kalman filter
Keyword: outlier
Keyword: robust recursive estimation
Keyword: volatility
MSC: 62F35
MSC: 62M10
MSC: 91G70
idZBL: Zbl 07031765
idMR: MR3902625
DOI: 10.14736/kyb-2018-6-1138
.
Date available: 2019-02-18T14:44:45Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147601
.
Reference: [1] Aknouche, A., Guerbyenne, H.: Recursive estimation of GARCH models..Comm. Statist. Simul. Comput. 35 (2006), 925-938. MR 2291371, 10.1080/03610910600880328
Reference: [2] Balke, N. S., Fomby, T. B.: Large shocks, small shocks, and economic fluctuations: outliers in macroeconomics time series..J. Appl. Econometr. 31 (1994), 307-327. 10.1002/jae.3950090205
Reference: [3] Bernholt, T., Fried, R., Gather, U., Wegener, I.: Modified repeated median filters..Statist. Comput. 16 (2006), 177-192. MR 2227394, 10.1007/s11222-006-8449-1
Reference: [4] Bollerslev, T.: Generalized autoregressive conditional heteroskedasticity..J. Econometr. 31 (1986), 307-327. MR 0853051, 10.1016/0304-4076(86)90063-1
Reference: [5] Bose, A., Mukherjee, K.: Estimating the ARCH parameters by solving linear equations..J. Time Series Anal. 24 (2003), 127-136. MR 1965808, 10.1111/1467-9892.00296
Reference: [6] Calvet, L. E., Czellar, V., Ronchetti, E.: Robust filtering..J. Amer. Statist. Assoc. 110 (2015), 1591-1606. MR 3449057, 10.1080/01621459.2014.983520
Reference: [7] Carnero, M. A., Peña, D., Ruiz, E.: Effects of outliers on the identification and estimation of GARCH models..J. Time Series Anal. 28 (2007), 471-497. MR 2396627, 10.1111/j.1467-9892.2006.00519.x
Reference: [8] Carnero, M. A., Peña, D., Ruiz, E.: Estimating GARCH volatility in the presence of outliers..Econom. Lett. 114 (2012), 86-90. MR 2879552, 10.1016/j.econlet.2011.09.023
Reference: [9] Charles, A.: Forecasting volatility with outliers in GARCH models..J. Forecast. 27 (2008), 551-565. MR 2588565, 10.1002/for.1065
Reference: [10] Charles, A., Darné, O.: Outliers and GARCH models in financial data..Econom. Lett. 86 (2005), 347-352. MR 2124418, 10.1016/j.econlet.2004.07.019
Reference: [11] Cipra, T.: Robust exponential smoothing..J. Forecast. 11 (1992), 57-69. 10.1002/for.3980110106
Reference: [12] Cipra, T.: Robust recursive estimation in nonlinear time-series..Comm. Statist. Theory Methods 27 (1998), 1071-1082. MR 1626293, 10.1080/03610929808832146
Reference: [13] Cipra, T., Hanzák, T.: Exponential smoothing for time series with outliers..Kybernetika 47 (2011), 165-178. MR 2828571
Reference: [14] Cipra, T., Romera, R.: Robust Kalman filter and its applications in time series analysis..Kybernetika 27 (1991), 481-494. MR 1150938
Reference: [15] Crevits, R., Croux, C.: Forecasting using robust exponential smoothing with damped trend and seasonal components..Working paper KBI_1714, KU Leuven, Leuven 2016 (DOI:10.13140/RG.2.2.11791.18080). 10.13140/RG.2.2.11791.18080)
Reference: [16] Croux, C., Gelper, S.: Computational aspects of robust Holt-Winters smoothing based on M-estimation..Appl. Math. 53 (2008), 163-176. MR 2411122, 10.1007/s10492-008-0002-4
Reference: [17] Croux, C., Gelper, S. E. C., Mahieu, K.: Robust exponential smoothing of multivariate time series..Comput. Statist. Data Anal. 54 (2010), 2999-3006. MR 2727729, 10.1016/j.csda.2009.05.003
Reference: [18] Dalhaus, R., Rao, S. S.: A recursive online algorithm for the estimation of time-varying ARCH parameters..Bernoulli 13 (2007), 389-422. MR 2331257, 10.3150/07-bej5009
Reference: [19] Engle, R. F.: Autoregressive conditional heteroskedasticity with estimates of the variance of United Kingdom inflation..Econometrica 50 (1982), 987-1007. MR 0666121, 10.2307/1912773
Reference: [20] Eraker, B., Johannes, M., Polson, N.: The impact of jumps in volatility and returns..J. Finance 58 (2003), 1269-1300. 10.1111/1540-6261.00566
Reference: [21] Fasso, A.: Recursive least squares with ARCH errors and nonparametric modelling of environmental time series..Working Paper 6, University of Bergamo 2009.
Reference: [22] Franke, J., Härdle, W. K., Hafner, C. M.: Statistics of Financial Markets: An Introduction..Springer, Berlin 2011. MR 2722946, 10.1007/978-3-642-16521-4
Reference: [23] Franses, P. H., Ghijsels, H.: Additive outliers, GARCH and forecasting volatility..Int. J. Forecast. 15 (1999), 1-9. 10.1016/s0169-2070(98)00053-3
Reference: [24] Galeano, P., Peña, D.: Finding outliers in linear and nonlinear time series..In: Robustness and Complex Data Structures (C. Becker, R. Fried, S. Kuhnt, eds.), Springer, Berlin 2013, pp. 243-260. MR 3135884, 10.1007/978-3-642-35494-6_15
Reference: [25] Gelper, S., Fried, R., Croux, C.: Robust forecasting with exponential and Holt-Winters smoothing..J. Forecast. 29 (2009), 285-300. Zbl 1203.62164, MR 2752114, 10.1002/for.1125
Reference: [26] Gerencsér, L., Orlovits, Z., Torma, B.: Recursive estimation of GARCH processes..In: Proc. 19th International Symposium on Mathematical Theory and Systems - MTNS (A. Edelmayer, ed.), Eötvös Loránd University, Budapest 2010, pp. 2415-2422.
Reference: [27] Grané, A., Veiga, H.: Wavelet based detection of outliers in financial time series..Comput. Statist. Data Anal. 54 (2010), 2580-2593. MR 2720462, 10.1016/j.csda.2009.12.010
Reference: [28] Gregory, A. V., Reeves, J. J.: Estimation and inference in ARCH model in the presence of outliers..J. Financ. Econometr. 8 (2010), 547-569. 10.1093/jjfinec/nbq028
Reference: [29] Grillenzoni, C.: Optimized adaptive prediction..J. Ital. Statist. Soc. 6 (1997), 37-58. 10.1007/bf03178900
Reference: [30] Grillenzoni, C.: Recursive generalized M-estimators of system parameters..Technometrics 39 (1997), 211-224. 10.2307/1270909
Reference: [31] Hendrych, R., Cipra, T.: Robustified on-line estimation of the EWMA models: Simulations and applications..In: Proc. 33rd International Conference Mathematical Methods in Economics (D. Martinčák, J. Ircingová, and P. Janeček, eds.). University of West Bohemia, Pilsen 2014, pp. 237-242. 10.3311/ppee.9684
Reference: [32] Hendrych, R., Cipra, T.: Self-weighted recursive estimation of GARCH models..Comm. Statist. Simul. Comput. 47 (2018), 315-328. MR 3757688, 10.1080/03610918.2015.1053924
Reference: [33] Hill, J. B.: Robust estimation and inference for heavy tailed GARCH..Bernoulli 21 (2015), 1629-1669. MR 3352056, 10.3150/14-bej616
Reference: [34] Hotta, L. K., Tsay, R. S.: Outliers in GARCH processes..In: Economic time series: Modeling and seasonality (W. R. Bell, S. H. Holan, and T. S. McElroy, eds.). CRC Press, Boca Raton 2012, pp. 337-358. MR 3076022, 10.1201/b11823-20
Reference: [35] Hyndman, R. J., Koehler, A. B., Ord, J. K., Snyder, R. D.: Forecasting with Exponential Smoothing. The State Space Approach..Springer, Berlin 2008. 10.1111/j.1751-5823.2009.00085_17.x
Reference: [36] Jiang, J., Zhao, Q., Hui, Y. V.: Robust modelling of ARCH models..J. Forecast. 20 (2001), 111-133. 10.1002/1099-131x(200103)20:2<111::aid-for786>3.0.co;2-n
Reference: [37] Kierkegaard, J., Nielsen, J., Jensen, L., Madsen, H.: Estimating GARCH models using recursive methods..
Reference: [38] Koch, K. R., Yang, Y.: Robust Kalman filter for rank deficient observation models..J. Geodesy 72 (1998), 436-441. 10.1007/s001900050183
Reference: [39] Lanius, V., Gather, U.: Robust online signal extraction from multivariate time series..Comput. Statist. Data Anal. 54 (2010), 966-975. MR 2580931, 10.1016/j.csda.2009.10.009
Reference: [40] Ling, S.: Self-weighted and local quasi-maximum likelihood estimators for ARMA-GARCH/ IGARCH models..J. Econometr. 140 (2007), 849-873. MR 2408929, 10.1016/j.jeconom.2006.07.016
Reference: [41] Ljung, L.: System Identification: Theory for the User..Prentice Hall PTR, Upper Saddle River 1999.
Reference: [42] Ljung, L., Söderström, T. S.: Theory and Practice of Recursive Identification..MIT Press, Cambridge 1983. MR 0719192
Reference: [43] Michálek, J.: Robust methods in exponential smoothing..Kybernetika 32 (1996), 289-306. MR 1438221
Reference: [44] Muler, N., Yohai, V.: Robust estimates for GARCH models..J. Statist. Planning Inference 138 (2008), 2918-2940. MR 2442223, 10.1016/j.jspi.2007.11.003
Reference: [45] Park, B.-J.: An outlier robust GARCH model and forecasting volatility of exchange rate returns..J. Forecast. 21 (2002), 381-393. 10.1002/for.827
Reference: [46] Peng, L., Yao, Q.: Least absolute deviations estimation for ARCH and GARCH models..Biometrika 90 (2003), 967-975. MR 2024770, 10.1093/biomet/90.4.967
Reference: [47] Romera, R., Cipra, T.: On practical implementation of robust Kalman filtering..Comm. Statist. Simul. Comput. 24 (1995), 461-488. Zbl 0850.62688, MR 1333047, 10.1080/03610919508813252
Reference: [48] Ruckdeschel, P., Spangl, B., Pupashenko, D.: Robust Kalman tracking and smoothing with propagating and non propagating outliers..Statist. Papers 55 (2014), 93-123. MR 3152769, 10.1007/s00362-012-0496-4
Reference: [49] Sakata, S., White, H.: High breakdown point conditional dispersion estimation with application to S&P 500 daily returns volatility..Econometrica 66 (1998), 529-567. 10.2307/2998574
Reference: [50] Shaolin, H. U., Meinke, K., Ouyang, H., Guoji, S.: Outlier-tolerant Kalman filter of state vectors in linear stochastic system..Int. J. Advanced Computer Sci. Appl. 2 (2011), 37-41. 10.14569/ijacsa.2011.021206
Reference: [51] Söderström, T. S., Stoica, P.: System Identification..Prentice Hall, New York 1989.
Reference: [52] Tsay, R. S.: Analysis of Financial Time Series..Wiley, Hoboken 2013. MR 2778591
Reference: [53] Yang, Y.: Adaptively robust Kalman filters with applications in navigation..In: Sciences of Geodesy (G. Xu, ed.), Springer, Berlin 2010, pp. 49-82. 10.14569/ijacsa.2011.021206
Reference: [54] Yang, Y., Gao, W., Zhang, X.: Robust Kalman filtering with constraints: a case study for integrated navigation..J. Geodesy 84 (2010), 373-381. 10.1007/s00190-010-0374-6
Reference: [55] Zhang, R., Ling, S.: Asymptotic inference for AR models with heavy-tailed G-GARCH noises..Econometr. Theory 31 (2015), 880-890. MR 3377272, 10.1017/s0266466614000632
Reference: [56] Zhu, K., Li, W. K.: A new Pearson-type QMLE for conditionally heteroskedastic models..J. Business Econom. Statist. 33 (2015), 552-565. MR 3416600, 10.1080/07350015.2014.977446
Reference: [57] Zhu, K., Ling, S.: Global self-weighted and local quasi-maximum exponential likelihood estimators for ARMA-GARCH/IGARCH models..Ann. Statist. 39 (2011), 2131-2163. MR 2893864, 10.1214/11-aos895
Reference: [58] Zhu, K., Ling, S.: LADE-based inference for ARMA models with unspecified and heavy-tailed heteroscedastic noises..J. Amer. Statist. Assoc. 110 (2015), 784-794. MR 3367264, 10.1080/01621459.2014.977386
.

Files

Files Size Format View
Kybernetika_54-2018-6_4.pdf 1.394Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo