Previous |  Up |  Next

Article

Keywords:
$n$-strongly Gorenstein gr-injective module; $n$-strongly Gorenstein gr-flat module; $n$-strongly Gorenstein gr-projective module
Summary:
Let $R$ be a graded ring and $n\geq 1$ an integer. We introduce and study $n$-strongly Gorenstein gr-projective, gr-injective and gr-flat modules. Some examples are given to show that $n$-strongly Gorenstein gr-injective (gr-projective, gr-flat, respectively) modules need not be $m$-strongly Gorenstein gr-injective (gr-projective, gr-flat, respectively) modules whenever $n>m$. Many properties of the $n$-strongly Gorenstein gr-injective and gr-flat modules are discussed, some known results are generalized. Then we investigate the relations between the graded and the ungraded $n$-strongly Gorenstein injective (or flat) modules. In addition, the connections between the $n$-strongly Gorenstein gr-projective, gr-injective and gr-flat modules are considered.
References:
[1] Asensio, M. J., Ramos, J. A. López, Torrecillas, B.: Gorenstein gr-injective and gr-projective modules. Commun. Algebra 26 (1998), 225-240. DOI 10.1080/00927879808826128 | MR 1600686 | Zbl 0895.16020
[2] Asensio, M. J., Ramos, J. A. López, Torrecillas, B.: Gorenstein gr-flat modules. Commun. Algebra 26 (1998), 3195-3209. DOI 10.1080/00927879808826336 | MR 1641595 | Zbl 0912.16022
[3] Asensio, M. J., Ramos, J. A. López, Torrecillas, B.: Covers and envelopes over gr-Gorenstein rings. J. Algebra 215 (1999), 437-459. DOI 10.1006/jabr.1998.7722 | MR 1686200 | Zbl 0942.16049
[4] Asensio, M. J., Ramos, J. A. López, Torrecillas, B.: FP-gr-injective modules and gr-FC-rings. Algebra and Number Theory. Proc. Conf., Fez, Morocco M. Boulagouaz Lecture Notes in Pure and Appl. Math. 208, Marcel Dekker, New York (2000), 1-11. DOI 10.1201/9780203903889.ch1 | MR 1724670 | Zbl 0963.16041
[5] Asensio, M. J., Ramos, J. A. López, Torrecillas, B.: Gorenstein gr-injective modules over graded isolated singularities. Commun. Algebra 28 (2000), 3197-3207. DOI 10.1080/00927870008827019 | MR 1765311 | Zbl 0998.16031
[6] Asensio, M. J., Ramos, J. A. López, Torrecillas, B.: Gorenstein modules over Zariski filtered rings. Commun. Algebra 31 (2003), 4371-4385. DOI 10.1081/AGB-120022797 | MR 1995540 | Zbl 1042.16036
[7] Auslander, M., Bridger, M.: Stable Module Theory. Memoirs of the American Mathematical Society 94, American Mathematical Society, Providence (1969). DOI 10.1090/memo/0094 | MR 0269685 | Zbl 0204.36402
[8] Bennis, D., Mahdou, N.: Strongly Gorenstein projective, injective, and flat modules. J. Pure Appl. Algebra 210 (2007), 437-445. DOI 10.1016/j.jpaa.2006.10.010 | MR 2320007 | Zbl 1118.13014
[9] Bennis, D., Mahdou, N.: A generalization of strongly Gorenstein projective modules. J. Algebra Appl. 8 (2009), 219-227. DOI 10.1142/S021949880900328X | MR 2514856 | Zbl 1176.16008
[10] Christensen, L. W.: Gorenstein Dimensions. Lecture Notes in Mathematics 1747. Springer, Berlin (2000). DOI 10.1007/BFb0103980 | MR 1799866 | Zbl 0965.13010
[11] Ding, N. Q., Chen, J. L.: The flat dimensions of injective modules. Manuscr. Math. 78 (1993), 165-177. DOI 10.1007/BF02599307 | MR 1202159 | Zbl 0804.16005
[12] Ding, N. Q., Chen, J. L.: Coherent rings with finite self-FP-injective dimension. Commun. Algebra 24 (1996), 2963-2980. DOI 10.1080/00927879608825724 | MR 1396867 | Zbl 0855.16001
[13] Enochs, E. E., Jenda, O. M. G.: Gorenstein injective and projective modules. Math. Z. 220 (1995), 611-633. DOI 10.1007/BF02572634 | MR 1363858 | Zbl 0845.16005
[14] Enochs, E. E., Jenda, O. M. G.: Relative Homological Algebra. de De Gruyter Expositions in Mathematics 30. Walter de Gruyter, Berlin (2000). DOI 10.1515/9783110803662 | MR 1753146 | Zbl 0952.13001
[15] Enochs, E. E., Jenda, O. M. G., Torrecillas, B.: Gorenstein flat modules. J. Nanjing Univ., Math. Biq. 10 (1993), 1-9. MR 1248299 | Zbl 0794.16001
[16] Enochs, E. E., Ramos, J. A. López: Gorenstein Flat Modules. Nova Science Publishers, Huntington (2001). MR 2017116 | Zbl 1157.16300
[17] Rozas, J. R. García, López-Ramos, J. A., Torrecillas, B.: On the existence of flat covers in $R$-$ gr$. Commun. Algebra 29 (2001), 3341-3349. DOI 10.1081/AGB-100105025 | MR 1849490 | Zbl 0992.16034
[18] Hermann, M., Ikeda, S., Orbanz, U.: Equimultiplicity and Blowing Up. An Algebraic Study. Springer, Berlin (1988). DOI 10.1007/978-3-642-61349-4 | MR 0954831 | Zbl 0649.13011
[19] Holm, H.: Gorenstein homological dimensions. J. Pure Appl. Algebra 189 (2004), 167-193. DOI 10.1016/j.jpaa.2003.11.007 | MR 2038564 | Zbl 1050.16003
[20] Mao, L. X.: Strongly Gorenstein graded modules. Front. Math. China 12 (2017), 157-176. DOI 10.1007/s11464-016-0595-y | MR 3569672 | Zbl 06823674
[21] Năstăsescu, C.: Some constructions over graded rings: Applications. J. Algebra 120 (1989), 119-138. DOI 10.1016/0021-8693(89)90192-0 | MR 0977864 | Zbl 0678.16001
[22] Năstăsescu, C., Oystaeyen, F. Van: Graded Ring Theory. North-Holland Mathematical Library 28, North-Holland Publishing Company, Amsterdam (1982). MR 0676974 | Zbl 0494.16001
[23] Năstăsescu, C., Oystaeyen, F. Van: Methods of Graded Rings. Lecture Notes in Mathematics 1836, Springer, Berlin (2004). DOI 10.1007/b94904 | MR 2046303 | Zbl 1043.16017
[24] Stenström, B.: Rings of Quotients. Die Grundlehren der mathematischen Wissenschaften 217. Springer, Berlin (1975), German. MR 0389953 | Zbl 0296.16001
[25] Yang, X., Liu, Z.: Strongly Gorenstein projective, injective and flat modules. J. Algebra 320 (2008), 2659-2674. DOI 10.1016/j.jalgebra.2008.07.006 | MR 2441993 | Zbl 1173.16006
[26] Yang, X., Liu, Z.: FP-gr-injective modules. Math. J. Okayama Univ. 53 (2011), 83-100. MR 2778885 | Zbl 1222.16029
[27] Zhao, G. Q., Huang, Z. Y.: $n$-strongly Gorenstein projective, injective and flat modules. Commun. Algebra 39 (2011), 3044-3062. DOI 10.1080/00927872.2010.496749 | MR 2834145 | Zbl 1247.16007
Partner of
EuDML logo