Title:
|
On Kneser solutions of the $n$-th order nonlinear differential inclusions (English) |
Author:
|
Pavlačková, Martina |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
69 |
Issue:
|
1 |
Year:
|
2019 |
Pages:
|
99-116 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The paper deals with the existence of a Kneser solution of the $n$-th order nonlinear differential inclusion \begin {eqnarray} {x}^{(n)}(t)\in -A_{1}(t,x(t),\ldots ,x^{(n-1)}(t)){x}^{(n-1)}(t)-\ldots -A_{n}(t,x(t),\ldots ,&x^{(n-1)}(t))x(t)\nonumber \\ &\text {for a.a.} \ t\in [a,\infty ),\nonumber \end {eqnarray} where $a\in (0,\infty )$, and $A_i\colon [a,\infty ) \times \mathbb {R}^{n}\to \mathbb {R}$, $i=1,\ldots ,n,$ are upper-Carathéodory mappings. The derived result is finally illustrated by the third order Kneser problem. (English) |
Keyword:
|
asymptotic $n$-th order vector problems |
Keyword:
|
$R_{\delta }$-set |
Keyword:
|
inverse limit technique |
Keyword:
|
Kneser problem |
MSC:
|
34A60 |
MSC:
|
34B15 |
MSC:
|
34B40 |
idZBL:
|
Zbl 07088773 |
idMR:
|
MR3923578 |
DOI:
|
10.21136/CMJ.2018.0191-17 |
. |
Date available:
|
2019-03-08T14:57:35Z |
Last updated:
|
2021-04-05 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147621 |
. |
Reference:
|
[1] Agarwal, R. P., O'Regan, D.: Infinite Interval Problems for Differential, Difference and Integral Equations.Kluwer Academic Publishers, Dordrecht (2001). Zbl 0988.34002, MR 1845855, 10.1007/978-94-010-0718-4 |
Reference:
|
[2] Andres, J., Gabor, G., Górniewicz, L.: Topological structure of solution sets to multi-valued asymptotic problems.Z. Anal. Anwend. 19 (2000), 35-60. Zbl 0974.34045, MR 1748055, 10.4171/ZAA/937 |
Reference:
|
[3] Andres, J., Gabor, G., Górniewicz, L.: Acyclicity of solution sets to functional inclusions.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 49 (2002), 671-688. Zbl 1012.34011, MR 1894303, 10.1016/S0362-546X(01)00131-6 |
Reference:
|
[4] Andres, J., Górniewicz, L.: Topological Fixed Point Principles for Boundary Value Problems.Topological Fixed Point Theory and Its Applications 1, Kluwer Academic Publishers, Dordrecht (2003). Zbl 1029.55002, MR 1998968, 10.1007/978-94-017-0407-6 |
Reference:
|
[5] Andres, J., Pavlačková, M.: Asymptotic boundary value problems for second-order differential systems.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71 (2009), 1462-1473. Zbl 1182.34038, MR 2524361, 10.1016/j.na.2008.12.013 |
Reference:
|
[6] Andres, J., Pavlačková, M.: Boundary value problems on noncompact intervals for the $n$-th order vector differential inclusions.Electron. J. Qual. Theory Differ. Equ. 2016 (2016), 19 pages. Zbl 06806157, MR 3547436, 10.14232/ejqtde.2016.1.60 |
Reference:
|
[7] Appell, J., Pascale, E. De, Thái, N. H., ıko, P. P. Zabre\v: Multi-valued superpositions.Diss. Math. 345 (1995), 97 pages. Zbl 0855.47037, MR 1354934 |
Reference:
|
[8] Aubin, J.-P., Cellina, A.: Differential Inclusions. Set-Valued Maps and Viability Theory.Grundlehren der Mathematischen Wissenschaften 264, Springer, Berlin (1984). Zbl 0538.34007, MR 0755330, 10.1007/978-3-642-69512-4 |
Reference:
|
[9] Bartušek, M., Cecchi, M., Marini, M.: On Kneser solutions of nonlinear third order differential equations.J. Math. Anal. Appl. 261 (2001), 72-84. Zbl 0995.34025, MR 1850957, 10.1006/jmaa.2000.7473 |
Reference:
|
[10] Bartušek, M., Došlá, Z.: Oscillation of third order differential equation with damping term.Czech. Math. J. 65 (2015), 301-316. Zbl 1363.34095, MR 3360427, 10.1007/s10587-015-0176-3 |
Reference:
|
[11] Borsuk, K.: Theory of Retracts.Monografie Matematyczne 44, PWN, Warszawa (1967). Zbl 0153.52905, MR 0216473 |
Reference:
|
[12] Cecchi, M., Furi, M., Marini, M.: About the solvability of ordinary differential equations with asymptotic boundary conditions.Boll. Unione Mat. Ital., VI. Ser., C, Anal. Funz. Appl. 4 (1985), 329-345. Zbl 0587.34013, MR 0805224 |
Reference:
|
[13] Fermi, E.: Un metodo statistico per la determinazione di alcune prioriet á dell'atomo.Rend. R. Accad. Nat. Lincei 6 (1927), 602-607 Italian. |
Reference:
|
[14] Filippov, A. F.: Differential Equations with Discontinuous Right-Hand Sides.Mathematics and Its Applications (Soviet Series) 18 Kluwer Academic Publishers, Dordrecht (1988). Zbl 0664.34001, MR 1028776, 10.1007/978-94-015-7793-9 |
Reference:
|
[15] Gabor, G.: On the acyclicity of fixed point sets of multivalued maps.Topol. Methods Nonlinear Anal. 14 (1999), 327-343. Zbl 0954.54022, MR 1766183, 10.12775/TMNA.1999.036 |
Reference:
|
[16] Górniewicz, L.: Topological Fixed Point Theory of Multivalued Mappings.Mathematics and Its Applications 495, Kluwer Academic Publishers, Dordrecht (1999). Zbl 0937.55001, MR 1748378, 10.1007/978-94-015-9195-9 |
Reference:
|
[17] Graef, J. R., Henderson, J., Ouahab, A.: Impulsive Differential Inclusions. A Fixed Point Approach.De Gruyter Series in Nonlinear Analysis and Applications 20, De Gruyter, Berlin (2013). Zbl 1285.34002, MR 3114179, 10.1515/9783110295313 |
Reference:
|
[18] Hartman, P., Wintner, A.: On the non-increasing solutions of $y''=f(x,y,y')$.Am. J. Math. 73 (1951), 390-404. Zbl 0042.32601, MR 0042004, 10.2307/2372184 |
Reference:
|
[19] Kantorovich, L. V., Akilov, G. P.: Functional Analysis in Normed Spaces.International Series of Monographs in Pure and Applied Mathematics 46, Pergamon Press, Oxford (1964). Zbl 0127.06104, MR 0213845 |
Reference:
|
[20] Kiguradze, I. T., Chanturia, T. A.: Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations.Mathematics and Its Applications (Soviet Series) 89, Kluwer Academic Publishers, Dordrecht (1993). Zbl 0782.34002, MR 1220223, 10.1007/978-94-011-1808-8 |
Reference:
|
[21] Kiguradze, I. T., Shekhter, B. L.: Singular boundary value problems for second-order ordinary differential equations.J. Soviet Math. 43 (1988), 2340-2417 English. Russian original translation from Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat. 30 1987 105-201. Zbl 0631.34021, MR 0925830, 10.1007/BF01100361 |
Reference:
|
[22] Kneser, A.: Untersuchung und asymptotische Darstellung der Integrale gewisser Differentialgleichungen bei grossen reellen Werten des Arguments I, II.J. für Math. 116 (1896), 178-212 117 1896 72-103 German \99999JFM99999 27.0253.03. MR 1580424 |
Reference:
|
[23] Kozlov, V. A.: On Kneser solutions of higher order nonlinear ordinary differential equations.Ark. Mat. 37 (1999), 305-322. Zbl 1118.34317, MR 1714766, 10.1007/BF02412217 |
Reference:
|
[24] Kurzweil, J.: Ordinary Differential Equations. Introduction to the Theory of Ordinary Differential Equations in the Real Domain.Studies in Applied Mechanics 13, Elsevier Scientific Publishing, Amsterdam; SNTL Publishers of Technical Literature, Praha (1986). Zbl 0667.34002, MR 0929466 |
Reference:
|
[25] O'Regan, D., Petruşel, A.: Leray-Schauder, Lefschetz and Krasnoselskii fixed point theory in Fréchet spaces for general classes of Volterra operators.Fixed Point Theory 9 (2008), 497-513. Zbl 1179.47049, MR 2464132 |
Reference:
|
[26] Padhi, S., Pati, S.: Theory of Third-Order Differential Equations.Springer, New Delhi (2014). Zbl 1308.34002, MR 3136420, 10.1007/978-81-322-1614-8 |
Reference:
|
[27] Partsvania, N., Sokhadze, Z.: Oscillatory and monotone solutions of first-order nonlinear delay differential equations.Georgian Math. J. 23 (2016), 269-277. Zbl 1342.34091, MR 3507955, 10.1515/gmj-2016-0015 |
Reference:
|
[28] Thomas, L. H.: The calculation of atomic fields.Proceedings Cambridge 23 (1927), 542-548 \99999JFM99999 53.0868.04. 10.1017/S0305004100011683 |
Reference:
|
[29] Vrabie, I. I.: Compactness Methods for Nonlinear Evolutions.Pitman Monographs and Surveys in Pure and Applied Mathematics 75, Longman Scientific & Technical, Harlow; John Wiley & Sons, New York (1995). Zbl 0842.47040, MR 1375237 |
. |