Previous |  Up |  Next

Article

Title: Finite distortion functions and Douglas-Dirichlet functionals (English)
Author: Shi, Qingtian
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 69
Issue: 1
Year: 2019
Pages: 183-195
Summary lang: English
.
Category: math
.
Summary: In this paper, we estimate the Douglas-Dirichlet functionals of harmonic mappings, namely Euclidean harmonic mapping and flat harmonic mapping, by using the extremal dilatation of finite distortion functions with given boundary value on the unit circle. In addition, $\bar {\partial }$-Dirichlet functionals of harmonic mappings are also investigated. (English)
Keyword: Douglas-Dirichlet functional
Keyword: $\rho $-harmonic mapping
Keyword: finite distortion functions
Keyword: extremal quasiconformal mapping
Keyword: Dirichlet's principle
MSC: 30C62
MSC: 30C70
MSC: 31A05
idZBL: Zbl 07088778
idMR: MR3923583
DOI: 10.21136/CMJ.2018.0238-17
.
Date available: 2019-03-08T14:59:43Z
Last updated: 2021-04-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147626
.
Reference: [1] Astala, K., Iwaniec, T., Martin, G. J.: Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane.Princeton Mathematical Series 48, Princeton University Press, Princeton (2009). Zbl 1182.30001, MR 2472875, 10.1515/9781400830114
Reference: [2] Astala, K., Iwaniec, T., Martin, G. J., Onninen, J.: Extremal mappings of finite distortion.Proc. Lond. Math. Soc., III. Ser. 91 (2005), 655-702. Zbl 1089.30013, MR 2180459, 10.1112/S0024611505015376
Reference: [3] Chen, X., Qian, T.: Estimation of hyperbolically partial derivatives of $\rho$-harmonic quasiconformal mappings and its applications.Complex Var. Elliptic Equ. 60 (2015), 875-892. Zbl 1317.30025, MR 3345479, 10.1080/17476933.2014.984292
Reference: [4] Duren, P.: Harmonic Mappings in the Plane.Cambridge Tracts in Mathematics 156, Cambridge University Press, Cambridge (2004). Zbl 1055.31001, MR 2048384, 10.1017/CBO9780511546600
Reference: [5] Feng, X.: Mappings of finite distortion and harmonic functions.Pure Appl. Math. 32 (2016), 119-126 Chinese. Zbl 1363.30046, 10.3969/j.issn.1008-5513.2016.02.002
Reference: [6] Feng, X., Tang, S.: A note on the $\rho$-Nitsche conjecture.Arch. Math. 107 (2016), 81-88. Zbl 1352.30037, MR 3514730, 10.1007/s00013-016-0906-2
Reference: [7] Hencl, S., Koskela, P., Onninen, J.: A note on extremal mappings of finite distortion.Math. Res. Lett. 12 (2005), 231-237. Zbl 1079.30024, MR 2150879, 10.4310/MRL.2005.v12.n2.a8
Reference: [8] Kalaj, D., Mateljević, M.: Inner estimate and quasiconformal harmonic maps between smooth domains.J. Anal. Math. 100 (2006), 117-132. Zbl 1173.30311, MR 2303306, 10.1007/BF02916757
Reference: [9] Li, Z.: On the boundary value problem for harmonic maps of the Poincaré disc.Chin. Sci. Bull. 42 (1997), 2025-2045. Zbl 0905.30017, MR 1641041, 10.1007/BF02882940
Reference: [10] Mateljević, M.: Dirichlet's principle, distortion and related problems for harmonic mappings.Publ. Inst. Math., Nouv. Sér. 75(89) (2004), 147-171. Zbl 1081.30022, MR 2108004, 10.2298/PIM0475147M
Reference: [11] Mateljević, M.: Dirichlet's principle, uniqueness of harmonic maps and extremal QC mappings.Zbornik Radova (Beograd) 10(18) (2004), 41-91. Zbl 1289.30001, MR 2109104
Reference: [12] Qi, Y., Shi, Q.: Quasi-isometricity and equivalent moduli of continuity of planar $1/|\omega|^2$-harmonic mappings.Filomat 31 (2017), 335-345. MR 3628843, 10.2298/FIL1702335Y
Reference: [13] Reich, E.: On the variational principle of Gerstenhaber and Rauch.Ann. Acad. Sci. Fenn., Ser. A I, Math. 10 (1985), 469-475. Zbl 0592.30027, MR 0802510, 10.5186/aasfm.1985.1052
Reference: [14] Reich, E.: Harmonic mappings and quasiconformal mappings.J. Anal. Math. 46 (1986), 239-245. Zbl 0608.30023, MR 0861702, 10.1007/BF02796588
Reference: [15] Schoen, R., Yau, T. S.: On univalent harmonic maps between surfaces.Invent. Math. 44 (1978), 265-278. Zbl 0388.58005, MR 0478219, 10.1007/BF01403164
Reference: [16] Shen, Y.: Quasiconformal mappings and harmonic functions.Adv. Math., Beijing 28 (1999), 347-357. Zbl 1054.30506, MR 1767643
Reference: [17] Shen, Y.: Extremal problems for quasiconformal mappings.J. Math. Anal. Appl. 247 (2000), 27-44. Zbl 0961.30011, MR 1766923, 10.1006/jmaa.2000.6806
Reference: [18] Wei, H.: On the uniqueness problem of harmonic quasiconformal mappings.Proc. Am. Math. Soc. 124 (1996), 2337-2341. Zbl 0858.30014, MR 1307523, 10.1090/S0002-9939-96-03178-4
Reference: [19] Yao, G.: $\bar{\partial}$-energy integral and harmonic mappings.Proc. Am. Math. Soc. 131 (2003), 2271-2277. Zbl 1074.30018, MR 1963777, 10.1090/S0002-9939-02-06757-6
Reference: [20] Yao, G.: $\bar{\partial}$-energy integral and uniqueness of harmonic maps.Math. Nachr. 278 (2005), 1086-1096. Zbl 1083.30020, MR 2150380, 10.1002/mana.200310294
.

Files

Files Size Format View
CzechMathJ_69-2019-1_15.pdf 300.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo