Title:
|
Finite distortion functions and Douglas-Dirichlet functionals (English) |
Author:
|
Shi, Qingtian |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
69 |
Issue:
|
1 |
Year:
|
2019 |
Pages:
|
183-195 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper, we estimate the Douglas-Dirichlet functionals of harmonic mappings, namely Euclidean harmonic mapping and flat harmonic mapping, by using the extremal dilatation of finite distortion functions with given boundary value on the unit circle. In addition, $\bar {\partial }$-Dirichlet functionals of harmonic mappings are also investigated. (English) |
Keyword:
|
Douglas-Dirichlet functional |
Keyword:
|
$\rho $-harmonic mapping |
Keyword:
|
finite distortion functions |
Keyword:
|
extremal quasiconformal mapping |
Keyword:
|
Dirichlet's principle |
MSC:
|
30C62 |
MSC:
|
30C70 |
MSC:
|
31A05 |
idZBL:
|
Zbl 07088778 |
idMR:
|
MR3923583 |
DOI:
|
10.21136/CMJ.2018.0238-17 |
. |
Date available:
|
2019-03-08T14:59:43Z |
Last updated:
|
2021-04-05 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147626 |
. |
Reference:
|
[1] Astala, K., Iwaniec, T., Martin, G. J.: Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane.Princeton Mathematical Series 48, Princeton University Press, Princeton (2009). Zbl 1182.30001, MR 2472875, 10.1515/9781400830114 |
Reference:
|
[2] Astala, K., Iwaniec, T., Martin, G. J., Onninen, J.: Extremal mappings of finite distortion.Proc. Lond. Math. Soc., III. Ser. 91 (2005), 655-702. Zbl 1089.30013, MR 2180459, 10.1112/S0024611505015376 |
Reference:
|
[3] Chen, X., Qian, T.: Estimation of hyperbolically partial derivatives of $\rho$-harmonic quasiconformal mappings and its applications.Complex Var. Elliptic Equ. 60 (2015), 875-892. Zbl 1317.30025, MR 3345479, 10.1080/17476933.2014.984292 |
Reference:
|
[4] Duren, P.: Harmonic Mappings in the Plane.Cambridge Tracts in Mathematics 156, Cambridge University Press, Cambridge (2004). Zbl 1055.31001, MR 2048384, 10.1017/CBO9780511546600 |
Reference:
|
[5] Feng, X.: Mappings of finite distortion and harmonic functions.Pure Appl. Math. 32 (2016), 119-126 Chinese. Zbl 1363.30046, 10.3969/j.issn.1008-5513.2016.02.002 |
Reference:
|
[6] Feng, X., Tang, S.: A note on the $\rho$-Nitsche conjecture.Arch. Math. 107 (2016), 81-88. Zbl 1352.30037, MR 3514730, 10.1007/s00013-016-0906-2 |
Reference:
|
[7] Hencl, S., Koskela, P., Onninen, J.: A note on extremal mappings of finite distortion.Math. Res. Lett. 12 (2005), 231-237. Zbl 1079.30024, MR 2150879, 10.4310/MRL.2005.v12.n2.a8 |
Reference:
|
[8] Kalaj, D., Mateljević, M.: Inner estimate and quasiconformal harmonic maps between smooth domains.J. Anal. Math. 100 (2006), 117-132. Zbl 1173.30311, MR 2303306, 10.1007/BF02916757 |
Reference:
|
[9] Li, Z.: On the boundary value problem for harmonic maps of the Poincaré disc.Chin. Sci. Bull. 42 (1997), 2025-2045. Zbl 0905.30017, MR 1641041, 10.1007/BF02882940 |
Reference:
|
[10] Mateljević, M.: Dirichlet's principle, distortion and related problems for harmonic mappings.Publ. Inst. Math., Nouv. Sér. 75(89) (2004), 147-171. Zbl 1081.30022, MR 2108004, 10.2298/PIM0475147M |
Reference:
|
[11] Mateljević, M.: Dirichlet's principle, uniqueness of harmonic maps and extremal QC mappings.Zbornik Radova (Beograd) 10(18) (2004), 41-91. Zbl 1289.30001, MR 2109104 |
Reference:
|
[12] Qi, Y., Shi, Q.: Quasi-isometricity and equivalent moduli of continuity of planar $1/|\omega|^2$-harmonic mappings.Filomat 31 (2017), 335-345. MR 3628843, 10.2298/FIL1702335Y |
Reference:
|
[13] Reich, E.: On the variational principle of Gerstenhaber and Rauch.Ann. Acad. Sci. Fenn., Ser. A I, Math. 10 (1985), 469-475. Zbl 0592.30027, MR 0802510, 10.5186/aasfm.1985.1052 |
Reference:
|
[14] Reich, E.: Harmonic mappings and quasiconformal mappings.J. Anal. Math. 46 (1986), 239-245. Zbl 0608.30023, MR 0861702, 10.1007/BF02796588 |
Reference:
|
[15] Schoen, R., Yau, T. S.: On univalent harmonic maps between surfaces.Invent. Math. 44 (1978), 265-278. Zbl 0388.58005, MR 0478219, 10.1007/BF01403164 |
Reference:
|
[16] Shen, Y.: Quasiconformal mappings and harmonic functions.Adv. Math., Beijing 28 (1999), 347-357. Zbl 1054.30506, MR 1767643 |
Reference:
|
[17] Shen, Y.: Extremal problems for quasiconformal mappings.J. Math. Anal. Appl. 247 (2000), 27-44. Zbl 0961.30011, MR 1766923, 10.1006/jmaa.2000.6806 |
Reference:
|
[18] Wei, H.: On the uniqueness problem of harmonic quasiconformal mappings.Proc. Am. Math. Soc. 124 (1996), 2337-2341. Zbl 0858.30014, MR 1307523, 10.1090/S0002-9939-96-03178-4 |
Reference:
|
[19] Yao, G.: $\bar{\partial}$-energy integral and harmonic mappings.Proc. Am. Math. Soc. 131 (2003), 2271-2277. Zbl 1074.30018, MR 1963777, 10.1090/S0002-9939-02-06757-6 |
Reference:
|
[20] Yao, G.: $\bar{\partial}$-energy integral and uniqueness of harmonic maps.Math. Nachr. 278 (2005), 1086-1096. Zbl 1083.30020, MR 2150380, 10.1002/mana.200310294 |
. |