Previous |  Up |  Next

Article

Title: Annihilators of local homology modules (English)
Author: Rezaei, Shahram
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 69
Issue: 1
Year: 2019
Pages: 225-234
Summary lang: English
.
Category: math
.
Summary: Let $(R,{\mathfrak m})$ be a local ring, $\mathfrak a$ an ideal of $R$ and $M$ a nonzero Artinian $R$-module of Noetherian dimension $n$ with ${\rm hd}(\mathfrak a, M)=n $. We determine the annihilator of the top local homology module ${\rm H}_{n}^{\mathfrak a}(M)$. In fact, we prove that $$ {\rm Ann}_R({\rm H}_{n}^{\mathfrak a}(M))={\rm Ann}_R(N(\frak a,M)), $$ where $N(\mathfrak a,M)$ denotes the smallest submodule of $M$ such that ${\rm hd}({\mathfrak a},M/N(\frak a,M))<n$. As a consequence, it follows that for a complete local ring $(R,\mathfrak m)$ all associated primes of ${\rm H}_{n}^{\mathfrak a}(M) $ are minimal. (English)
Keyword: local homology
Keyword: Artinian modules
Keyword: annihilator
MSC: 13D45
MSC: 13E05
idZBL: Zbl 07088781
idMR: MR3923586
DOI: 10.21136/CMJ.2018.0263-17
.
Date available: 2019-03-08T15:00:53Z
Last updated: 2021-04-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147629
.
Reference: [1] Atazadeh, A., Sedghi, M., Naghipour, R.: On the annihilators and attached primes of top local cohomology modules.Arch. Math. 102 (2014), 225-236. Zbl 1292.13004, MR 3181712, 10.1007/s00013-014-0629-1
Reference: [2] Bahmanpour, K.: Annihilators of local cohomology modules.Commun. Algebra 43 (2015), 2509-2515. Zbl 1323.13003, MR 3344203, 10.1080/00927872.2014.900687
Reference: [3] Bahmanpour, K., Azami, J., Ghasemi, G.: On the annihilators of local cohomology modules.J. Algebra 363 (2012), 8-13. Zbl 1262.13027, MR 2925842, 10.1016/j.jalgebra.2012.03.026
Reference: [4] Brodmann, M. P., Sharp, R. Y.: Local Cohomology. An Algebraic Introduction with Geometric Applications.Cambridge Studies in Advanced Mathematics 60, Cambridge University Press, Cambridge (1998). Zbl 0903.13006, MR 1613627, 10.1017/CBO9780511629204
Reference: [5] Cuong, N. T., Nam, T. T.: The $I$-adic completion and local homology for Artinian modules.Math. Proc. Camb. Philos. Soc. 131 (2001), 61-72. Zbl 1094.13524, MR 1833074, 10.1017/S0305004101005126
Reference: [6] Cuong, N. T., Nam, T. T.: A local homology theory for linearly compact modules.J. Algebra 319 (2008), 4712-4737. Zbl 1143.13021, MR 2416740, 10.1016/j.jalgebra.2007.11.030
Reference: [7] Cuong, N. T., Nhan, L. T.: On the Noetherian dimension of Artinian modules.Vietnam J. Math. 30 (2002), 121-130. Zbl 1096.13523, MR 1934343
Reference: [8] Divaani-Aazar, K., Naghipour, R., Tousi, M.: Cohomological dimension of certain algebraic varieties.Proc. Am. Math. Soc. 130 (2002), 3537-3544. Zbl 0998.13007, MR 1918830, 10.1090/S0002-9939-02-06500-0
Reference: [9] Greenless, J. P. C., May, J. P.: Derived functors of $I$-adic completion and local homology.J. Algebra 149 (1992), 438-453. Zbl 0774.18007, MR 1172439, 10.1016/0021-8693(92)90026-I
Reference: [10] Kirby, D.: Dimension and length for Artinian modules.Q. J. Math., Oxf. II. Ser. 41 (1990), 419-429. Zbl 0724.13015, MR 1081104, 10.1093/qmath/41.4.419
Reference: [11] Ooishi, A.: Matlis duality and the width of a module.Hiroshima Math. J. 6 (1976), 573-587. Zbl 0437.13007, MR 0422243, 10.32917/hmj/1206136213
Reference: [12] Rezaei, S.: Associated primes of top local homology modules with respect to an ideal.Acta Math. Univ. Comen., New Ser. 81 (2012), 197-202. Zbl 1274.13021, MR 2975285
Reference: [13] Rezaei, S.: Some results on top local cohomology and top formal local cohomology modules.Commun. Algebra 45 (2017), 1935-1940. Zbl 1375.13026, MR 3582837, 10.1080/00927872.2016.1226867
Reference: [14] Roberts, R. N.: Krull dimension for Artinian modules over quasi local commutative rings.Quart. J. Math. Oxford Ser. (2) 26 (1975), 269-273. Zbl 0311.13006, MR 0389884, 10.1093/qmath/26.1.269
Reference: [15] Sharp, R. Y.: Some results on the vanishing of local cohomology modules.Proc. Lond. Math. Soc., III. Ser. 30 (1975), 177-195. Zbl 0298.13011, MR 0379474, 10.1112/plms/s3-30.2.177
Reference: [16] Tang, Z.: Local homology theory for Artinian modules.Commun. Algebra 22 (1994), 1675-1684. Zbl 0797.13005, MR 1264734, 10.1080/00927879408824928
.

Files

Files Size Format View
CzechMathJ_69-2019-1_18.pdf 269.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo