[1] Akewe, H., Okeke, G. A.:
Convergence and stability theorems for the Picard-Mann hybrid iterative scheme for a general class of contractive-like operators. Fixed Point Theory Appl. 2015 (2015), Paper No. 66, 8 pages.
DOI 10.1186/s13663-015-0315-4 |
MR 3343141 |
Zbl 1312.47078
[4] Berinde, V.:
On a notion of rapidity of convergence used in the study of fixed point iterative methods. Creat. Math. Inform. 25 (2016), 29-40.
MR 3558671 |
Zbl 06762010
[5] Berinde, V., Păcurar, M.:
A fixed point proof of the convergence of a Newton-type method. Fixed Point Theory 7 (2006), 235-244.
MR 2284596 |
Zbl 1115.65053
[6] Bosede, A. O., Rhoades, B. E.:
Stability of Picard and Mann iteration for a general class of functions. J. Adv. Math. Stud. 3 (2010), 23-25.
MR 2722440 |
Zbl 1210.47093
[7] Chidume, C. E., Olaleru, J. O.:
Picard iteration process for a general class of contractive mappings. J. Niger. Math. Soc. 33 (2014), 19-23.
MR 3235868 |
Zbl 1341.47079
[8] Fukhar-ud-din, H., Berinde, V.:
Iterative methods for the class of quasi-contractive type operators and comparison of their rate of convergence in convex metric spaces. Filomat 30 (2016), 223-230.
DOI 10.2298/FIL1601223F |
MR 3498766 |
Zbl 06749677
[10] Gürsoy, F., Karakaya, V.:
A Picard-S hybrid type iteration method for solving a differential equation with retarded argument. Avaible at
https://arxiv.org/abs/1403.2546 (2014), 16 pages.
[11] Gürsoy, F., Karakaya, V., Rhoades, B. E.:
Data dependence results of new multi-step and S-iterative schemes for contractive-like operators. Fixed Point Theory Appl. 2013 (2013), Paper No. 76, 12 pages.
DOI 10.1186/1687-1812-2013-76 |
MR 3047130 |
Zbl 06282865
[13] Haghi, R. H., Postolache, M., Rezapour, S.:
On T-stability of the Picard iteration for generalized $\phi$-contraction mappings. Abstr. Appl. Anal. 2012 (2012), Article ID 658971, 7 pages.
DOI 10.1155/2012/658971 |
MR 2965457 |
Zbl 1252.54035
[14] Harder, A. M., Hicks, T. L.:
Stability results for fixed point iteration procedures. Math. Jap. 33 (1988), 693-706.
MR 0972379 |
Zbl 0655.47045
[16] Karakaya, V., Doğan, K., Gürsoy, F., Ertürk, M.:
Fixed point of a new three-step iteration algorithm under contractive-like operators over normed spaces. Abstr. Appl. Anal. 2013 (2013), Article ID 560258, 9 pages.
DOI 10.1155/2013/560258 |
MR 3147859 |
Zbl 1364.47026
[17] Karakaya, V., Gürsoy, F., Ertürk, M.:
Some convergence and data dependence results for various fixed point iterative methods. Kuwait J. Sci. 43 (2016), 112-128.
MR 3496310
[20] Khan, A. R., Gürsoy, F., Kumar, V.:
Stability and data dependence results for the Jungck-Khan iterative scheme. Turkish J. Math. 40 (2016), 631-640.
DOI 10.3906/mat-1503-1 |
MR 3486126
[25] Phuengrattana, W., Suantai, S.:
Comparison of the rate of convergence of various iterative methods for the class of weak contractions in Banach spaces. Thai J. Math. 11 (2013), 217-226.
MR 3065435 |
Zbl 1294.47090
[26] Picard, E.: Mémoire sur la théorie des équations aux dérivées partielles et la méthode des approximations successives. Journ. de Math. (4) 6 (1890), 145-210 French \99999JFM99999 22.0357.02.
[27] Sahu, D. R.:
Applications of the S-iteration process to constrained minimization problems and split feasibility problems. Fixed Point Theory 12 (2011), 187-204.
MR 2797080 |
Zbl 1281.47053
[29] Şoltuz, Ş. M., Grosan, T.:
Data dependence for Ishikawa iteration when dealing with contractive-like operators. Fixed Point Theory Appl. 2008 (2008), Article ID 242916, 7 pages.
DOI 10.1155/2008/242916 |
MR 2415408 |
Zbl 1205.47059
[31] Yildirim, I., Abbas, M., Karaca, N.:
On the convergence and data dependence results for multistep Picard-Mann iteration process in the class of contractive-like operators. J. Nonlinear Sci. Appl. 9 (2016), 3773-3786.
DOI 10.22436/jnsa.009.06.27 |
MR 3517127 |
Zbl 1350.47050