Previous |  Up |  Next

Article

Title: Logarithmically improved blow-up criterion for smooth solutions to the Leray-$\alpha $-magnetohydrodynamic equations (English)
Author: Ben Omrane, Ines
Author: Gala, Sadek
Author: Kim, Jae-Myoung
Author: Ragusa, Maria Alessandra
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 55
Issue: 1
Year: 2019
Pages: 55-68
Summary lang: English
.
Category: math
.
Summary: In this paper, the Cauchy problem for the $3D$ Leray-$\alpha $-MHD model is investigated. We obtain the logarithmically improved blow-up criterion of smooth solutions for the Leray-$\alpha $-MHD model in terms of the magnetic field $B$ only in the framework of homogeneous Besov space with negative index. (English)
Keyword: magnetohydrodynamic-$\alpha $ model
Keyword: regularity criterion
Keyword: Besov space
MSC: 35B40
MSC: 76D03
idZBL: Zbl 07088758
idMR: MR3939064
DOI: 10.5817/AM2019-1-55
.
Date available: 2019-03-23T12:23:46Z
Last updated: 2020-02-27
Stable URL: http://hdl.handle.net/10338.dmlcz/147650
.
Reference: [1] Chen, S.Y., Foias, C., Holm, D.D., Olson, E., Titi, E.S., Wynne, S.: Camassa-Holm equations as a closure model for trubulent channel andpipe flow.Phys. Rev. Lett. 81 (1998), 5338–5341. MR 1745983, 10.1103/PhysRevLett.81.5338
Reference: [2] Chen, S.Y., Foias, C., Holm, D.D., Olson, E., Titi, E.S., Wynne, S.: A connection between the Camassa-Holm equations and turbulent flowsin channels and pipes.Phys. Fluids 11 (1999), 2343–2353. MR 1719962, 10.1063/1.870096
Reference: [3] Chen, S.Y., Foias, C., Holm, D.D., Olson, E., Titi, E.S., Wynne, S.: The Camassa-Holm equations and turbulence.Phys. D 133 (1999), 49–65. MR 1721139, 10.1016/S0167-2789(99)00098-6
Reference: [4] Cheskidov, A., Holm, D.D., Olson, E., Titi, E.S.: On a Leray-$\alpha $ model of turbulence.Proc. Roy. Soc. London Ser. A 461 (2005), 629–649. MR 2121928
Reference: [5] Fan, J., Ozawa, T.: Regularity criteria for the magnetohydrodynamic equations with partial viscous terms and the Leray-$\alpha $-MHD model.Kinet. Relat. Models 2 (2009), 293–305. MR 2507450, 10.3934/krm.2009.2.293
Reference: [6] Foias, C., Holm, D.D., Titi, E.S.: The three dimensional viscous Camassa-Holm equations, and their relation to the Navier-Stokesequations and trubulence theory.J. Differential Equations 14 (2002), 1–35. MR 1878243, 10.1023/A:1012984210582
Reference: [7] Frazier, M., Jawerth, B., Weiss, G.: Littlewood-Paley theoryand the study of function spaces.CBMS Regional Conference Series in Mathematics, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI,, 1991. MR 1107300
Reference: [8] Gala, S., Guo, Z.: Remarks on logarithmical regularity criteria for the Navier–Stokes equations.J. Math. Phys. 52 (6) (2011), 9pp., 063503 https://doi.org/10.1063/1.3569967. MR 2841759, 10.1063/1.3569967
Reference: [9] Hajaiej, H., Molinet, L., Ozawa, T., Wang, B.: Necessary and sufficient conditions for the fractional Gargliardo-Nirenberginequalities and applications to Navier-Stokes and generalized bosonequations.RIMS Kokyuroku Bessatsu 26 (2011), 159–175. MR 2883850
Reference: [10] Holm, D.D.: Lagrangian averages, averaged Lagragians, and themean effects of fluctuations in fluid dynamics.Chaos 12 (2002), 518–530. MR 1907663, 10.1063/1.1460941
Reference: [11] Ilyin, A.A., Lunasin, E.M., Titi, E.S.: A modified-Leray-$\alpha $ subgrid scale model of turbulence.Nonlinearity 19 (2006), 879–897. MR 2214948, 10.1088/0951-7715/19/4/006
Reference: [12] Kato, T.: Liapunov Functions and Monotonicity in the Euler andNavier-Stokes Equations.Lecture Notes in Math., vol. 1450, Springer-Verlag, Berlin, 1990. MR 1084601, 10.1007/BFb0084898
Reference: [13] Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier-Stokes equations.Comm. Pure Appl. Math. 41 (1988), 891–907. Zbl 0671.35066, MR 0951744, 10.1002/cpa.3160410704
Reference: [14] Linshiz, J.S., Titi, E.S.: Analytical study of certainmagnetohydrodynamic-$\alpha $ models.J. Math. Phys. 48 (2007), 28pp., 065504. MR 2337020, 10.1063/1.2360145
Reference: [15] Machihara, S., Ozawa, T.: Interpolation inequalities in Besovspace.Proc. Amer. Math. Soc. 131 (2003), 1553–1556. MR 1949885, 10.1090/S0002-9939-02-06715-1
Reference: [16] Meyer, Y.: Oscillating patterns in some linear evolutionequations.Lecture Notes in Math., vol. 1871, 2006, pp. 101–187. MR 2196363
Reference: [17] Zhou, Y.: Remarks on regularities for the 3D MHD equations.Discrete Contin. Dynam. Systems 12 (2005), 881–886. MR 2128731, 10.3934/dcds.2005.12.881
Reference: [18] Zhou, Y.: Regularity criteria for the generalized viscous MHDequations.Ann. Inst. H. Poincaré Anal. Non Linéaire 24 (3) (2007), 491–505. MR 2321203, 10.1016/j.anihpc.2006.03.014
Reference: [19] Zhou, Y., Fan, J.: On the Cauchy problem for a Leray-$\alpha $ model.Nonlinear Analysis Real World Applications (2010). MR 2729050
Reference: [20] Zhou, Y., Fan, J.: Regularity criteria for a Lagrangian-averaged magnetohydrodynamic-$\alpha $ model.Nonlinear Anal. 74 (2011), 1410–1420. MR 2746819, 10.1016/j.na.2010.10.014
Reference: [21] Zhou, Y., Fan, J.: Regularity criteria for a magnetohydrodynamic-$\alpha $ model.Comm. Pure Appl. Anal. 10 (2011), 309–326. MR 2746540, 10.3934/cpaa.2011.10.309
Reference: [22] Zhou, Y., Gala, S.: Logarithmically improved regularitycriteria for the Navier–Stokes equations in multiplier spaces.J. Math. Anal. Appl. 356 (2009), 498–501. MR 2524284, 10.1016/j.jmaa.2009.03.038
Reference: [23] Zhou, Y., Gala, S.: Regularity criteria for the solutions tothe 3D MHD equations in the multiplier space.Z. Angew. Math. Phys. 61 (2010), 193–199. MR 2609661, 10.1007/s00033-009-0023-1
.

Files

Files Size Format View
ArchMathRetro_055-2019-1_7.pdf 522.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo