Previous |  Up |  Next

Article

Title: On some extremal problems in Bergman spaces in weakly pseudoconvex domains (English)
Author: Shamoyan, Romi F.
Author: Mihić, Olivera R.
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388
Volume: 26
Issue: 2
Year: 2018
Pages: 83-97
Summary lang: English
.
Category: math
.
Summary: We consider and solve extremal problems in various bounded weakly pseudoconvex domains in $\mathbb {C}^{n}$ based on recent results on boundedness of Bergman projection with positive Bergman kernel in Bergman spaces $A_{\alpha }^{p}$ in such type domains. We provide some new sharp theorems for distance function in Bergman spaces in bounded weakly pseudoconvex domains with natural additional condition on Bergman representation formula. (English)
Keyword: Bergman spaces
Keyword: distance estimates
Keyword: pseudoconvex domains
Keyword: analytic functions
MSC: 42B15
MSC: 42B30
idZBL: Zbl 07058957
idMR: MR3898195
.
Date available: 2019-05-07T09:19:03Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147652
.
Reference: [1] Ahn, H., Cho, S.: On the mapping properties of the Bergman projection on pseudoconvex domains with one degenerate eigenvalue.Complex Variables Theory Appl., 39, 4, 1999, 365-379, MR 1727631, 10.1080/17476939908815203
Reference: [2] Arsenović , M., Shamoyan, R.: On distance estimates and atomic decomposition on spaces of analytic functions on strictly pseudoconvex domains.Bulletin Korean Math. Society, 52, 1, 2015, 85-103, MR 3313426
Reference: [3] Beatrous, F.: Estimates for derivatives of holomorphic functions in strongly pseudoconvex domains.Math. Zam., 191, 1, 1986, 91-116, MR 0812605, 10.1007/BF01163612
Reference: [4] Charpentier, P., Dupain, Y.: Estimates for the Bergman and Szegö projections for pseudoconvex domains of finite type with locally diagonalizable Levi form.Publ. Mat., 50, 2006, 413-446, MR 2273668, 10.5565/PUBLMAT_50206_08
Reference: [5] Chen, B.: Weighted Bergman kernel: asymptotic behavior, applications and comparison results.Studia Mathematica, 174, 2, 2006, 111-130, MR 2238457, 10.4064/sm174-2-1
Reference: [6] Cho, H.R., Kwon, E.G.: Embedding of Hardy spaces into weighted Bergman spaces in bounded domains with $C^2$ boundary.Illinois J. Math., 48, 3, 2004, 747-757, MR 2114249, 10.1215/ijm/1258131050
Reference: [7] Cho, S.: A mapping property of the Bergman projection on certain pseudoconvex domains.Tóhoku Math. Journal, 48, 1996, 533-542, MR 1419083, 10.2748/tmj/1178225297
Reference: [8] Ehsani, D., Lieb, I.: $L^p$-estimates for the Bergman projection on strictly pseudoconvex nonsmooth domains.Math. Nachr., 281, 7, 2008, 916-929, MR 2431567, 10.1002/mana.200710649
Reference: [9] Gheorghe, L.G.: Interpolation of Besov spaces and applications.Le Matematiche, LV, Fasc. I, 2000, 29-42, MR 1888995
Reference: [10] Jevtić, M.: Besov spaces on bounded symmetric domains.Matematički vesnik, 49, 1997, 229-233, MR 1611753
Reference: [11] Lanzani, L., Stein, E.M.: The Bergman projection in $L^p$ for domains with minimal smoothness.Illinois Journal of Mathematics, 56, 1, 2012, 127-154, MR 3117022, 10.1215/ijm/1380287464
Reference: [12] McNeal, J.D., Stein, E.M.: Mapping properties of the Bergman projection on convex domain of finite type.Duke Math. J., 73, 1994, 177-199, MR 1257282
Reference: [13] Phong, D.H., Stein, E.M.: Estimates for the Bergman and Szegö projection on strongly pseudoconvex domains.Duke Math. J., 44, 1977, 695-704, MR 0450623
Reference: [14] Shamoyan, R.F., Kurilenko, S.M.: On extremal problems in tubular domains over symmetric cones.Issues of Analysis, 1, 2014, 44-65, MR 3352521, 10.15393/j3.art.2014.2261
Reference: [15] Shamoyan, R.F., Mihić , O.: Extremal Problems in Certain New Bergman Type Spaces in Some Bounded Domains in $\mathbb {C}^{n}$.Journal of Function Spaces, 2014, 2014, p. 11, Article ID 975434. MR 3248932
Reference: [16] Shamoyan, R.F., Mihić, O.: On distance function in some new analytic Bergman type spaces in $\mathbb {C}^{n}$.Journal of Function Spaces, 2014, 2014, p. 10, Article ID 275416. MR 3208648
Reference: [17] Shamoyan, R.F., Mihić, O.: On new estimates for distances in analytic function spaces in higher dimension.Siberian Electronic Mathematical Reports, 6, 2009, 514-517, Zbl 1299.30106, MR 2586703
Reference: [18] Zhu, K.: Holomorphic Besov spaces on bounded symmetric domains.Quarterly J. Math., 46, 1995, 239-256, MR 1333834, 10.1093/qmath/46.2.239
Reference: [19] Zhu, K.: Holomorphic Besov spaces on bounded symmetric domains, III.Indiana University Mathematical Journal, 44, 1995, 1017-1031, MR 1386759
.

Files

Files Size Format View
ActaOstrav_26-2018-2_1.pdf 452.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo