Previous |  Up |  Next

Article

Title: New stability results for spheres and Wulff shapes (English)
Author: Roth, Julien
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388
Volume: 26
Issue: 2
Year: 2018
Pages: 153-167
Summary lang: English
.
Category: math
.
Summary: We prove that a closed convex hypersurface of the Euclidean space with almost constant anisotropic first and second mean curvatures in the $L^p$-sense is $W^{2,p}$-close (up to rescaling and translations) to the Wulff shape. We also obtain characterizations of geodesic hyperspheres of space forms improving those of \cite {Ro1} and \cite {Ro}. (English)
Keyword: Hypersurfaces
Keyword: Anisotropic mean curvatures
Keyword: Wulff Shape
Keyword: Almost umibilcal
MSC: 53A10
MSC: 53C42
idZBL: Zbl 07058962
idMR: MR3898200
.
Date available: 2019-05-07T09:26:42Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147653
.
Reference: [1] Lellis, C. De, Müller, S.: Optimal rigidity estimates for nearly umbilical surfaces.J. Diff. Geom., 69, 1, 2005, 75-110, MR 2169583, 10.4310/jdg/1121540340
Reference: [2] Rosa, A. De, Gioffrè, S.: Quantitative stability for anisotropic nearly umbilical hypersurfaces.2017, arXiv:1705.09994. MR 3896120
Reference: [3] Gioffrè, S.: A $W^{2,p}$-estimate for nearly umbilical hypersurfaces.2016, arXiv:1612.08570.
Reference: [4] He, Y., Li, H.: Integral formula of Minkowski type and new characterization of the Wulff shape.Acta Math. Sinica, 24, 4, 2008, 697-704, MR 2393162, 10.1007/s10114-007-7116-6
Reference: [5] Hoffman, D., Spruck, D.: Sobolev and isoperimetric inequalities for Riemannian submanifolds.Comm. Pure Appl. Math., 27, 1974, 715-727, Zbl 0295.53025, MR 0365424, 10.1002/cpa.3160270601
Reference: [6] Michael, J. H., Simon, L. M.: Sobolev and mean-value inequalities on generalized submanifolds of $R^n$.Comm. Pure Appl. Math., 26, 1973, 361-379, MR 0344978, 10.1002/cpa.3160260305
Reference: [7] Onat, L.: Some characterizations of the Wulff shape.C. R. Math. Acad. Sci. Paris, 348, 17-18, 2010, 997-1000, MR 2721788, 10.1016/j.crma.2010.07.028
Reference: [8] Perez, D.: On nearly umbilical hypersurfaces.2011, Ph.D. thesis, Universität Zürich.
Reference: [9] Roth, J.: Extrinsic radius pinching for hypersurfaces of space forms.Diff. Geom. Appl., 25, 5, 2007, 485-499, MR 2351425, 10.1016/j.difgeo.2007.06.017
Reference: [10] Roth, J.: Rigidity results for geodesic spheres in space forms.Differential Geometry, Proceedings of the VIIIth International Colloquium in Differential Geometry, Santiago de Compostela, 2009, 156-163, World Scientific, MR 2523501
Reference: [11] Roth, J.: Une nouvelle caractérisation des sphères géodésiques dans les espaces modèles.Compte-Rendus - Mathématique, 347, 19-20, 2009, 1197-1200, MR 2567002, 10.1016/j.crma.2009.09.012
Reference: [12] Roth, J.: A remark on almost umbilical hypersurfaces.Arch. Math. (Brno), 49, 1, 2013, 1-7, MR 3073010, 10.5817/AM2013-1-1
Reference: [13] Roth, J., Scheuer, J.: Explicit rigidity of almost-umbilical hypersurfaces.2015, arXiv preprint arXiv:1504.05749. MR 3919552
Reference: [14] Topping, P.: Relating diameter and mean curvature for submanifolds of Euclidean space.Comment. Math. Helv., 83, 3, 2008, 539-546, MR 2410779, 10.4171/CMH/135
Reference: [15] Wu, J.Y., Zheng, Y.: Relating diameter and mean curvature for Riemannian submanifolds.Proc. Amer. Math. Soc., 139, 11, 2011, 4097-4104, MR 2823054, 10.1090/S0002-9939-2011-10848-7
.

Files

Files Size Format View
ActaOstrav_26-2018-2_7.pdf 424.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo