Title:
|
A combinatorial proof of the extension property for partial isometries (English) |
Author:
|
Hubička, Jan |
Author:
|
Konečný, Matěj |
Author:
|
Nešetřil, Jaroslav |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
60 |
Issue:
|
1 |
Year:
|
2019 |
Pages:
|
39-47 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We present a short and self-contained proof of the extension property for partial isometries of the class of all finite metric spaces. (English) |
Keyword:
|
metric space |
Keyword:
|
Hrushovski property |
Keyword:
|
extension property for partial automorphisms |
Keyword:
|
homogeneous structure |
Keyword:
|
amalgamation class |
MSC:
|
05E18 |
MSC:
|
20B27 |
MSC:
|
20F05 |
MSC:
|
22F50 |
MSC:
|
37B05 |
MSC:
|
54E35 |
idZBL:
|
Zbl 07088824 |
idMR:
|
MR3946663 |
DOI:
|
10.14712/1213-7243.2015.275 |
. |
Date available:
|
2019-05-13T07:45:36Z |
Last updated:
|
2021-04-05 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147673 |
. |
Reference:
|
[1] Aranda A., Bradley-Williams D., Hubička J., Karamanlis M., Kompatscher M., Konečný M., Pawliuk M.: Ramsey Expansions of Metrically Homogeneous Graphs.available at arXiv:1707.02612 [math.CO], 2017. |
Reference:
|
[2] Evans D., Hubička J., Konečný M., Nešetřil J.: EPPA for two-graphs and antipodal metric spaces.available at arXiv:1812.11157 [math.CO] (2018), 13 pages. |
Reference:
|
[3] Evans D. M., Hubička J., Nešetřil J.: Ramsey properties and extending partial automorphisms for classes of finite structures.available at arXiv:1705.02379 [math.CO] (2017), 33 pages. |
Reference:
|
[4] Hall M. Jr.: Coset representations in free groups.Trans. Amer. Math. Soc. 67 (1949), 421–432. MR 0032642, 10.1090/S0002-9947-1949-0032642-4 |
Reference:
|
[5] Herwig B., Lascar D.: Extending partial automorphisms and the profinite topology on free groups.Trans. Amer. Math. Soc. 352 (2000), no. 5, 1985–2021. MR 1621745, 10.1090/S0002-9947-99-02374-0 |
Reference:
|
[6] Hodkinson I.: Finite model property for guarded fragments.2012, slides available at http://www.cllc.vuw.ac.nz/LandCtalks/imhslides.pdf. |
Reference:
|
[7] Hodkinson I., Otto M.: Finite conformal hypergraph covers and Gaifman cliques in finite structures.Bull. Symbolic Logic 9 (2003), no. 3, 387–405. MR 2005955, 10.2178/bsl/1058448678 |
Reference:
|
[8] Huang J., Pawliuk M., Sabok M., Wise D.: The Hrushovski property for hypertournaments and profinite topologies.available at arXiv:1809.06435 [math.LO] (2018), 20 pages. |
Reference:
|
[9] Hubička J., Konečný M., Nešetřil J.: Conant's generalised metric spaces are Ramsey.available at arXiv:1710.04690 [math.CO] (2017), 22 pages. |
Reference:
|
[10] Hubička J., Konečný M., Nešetřil J.: All those EPPA classes (Strengthenings of the Herwig–Lascar theorem).available at arXiv:1902.03855 [math.CO] (2019), 27 pages. |
Reference:
|
[11] Hubička J., Nešetřil J.: All those Ramsey classes (Ramsey classes with closures and forbidden homomorphisms).available at arXiv:1606.07979 [math.CO] (2016), 59 pages. |
Reference:
|
[12] Hubička J., Nešetřil J.: Ramsey theorem for designs.The Ninth European Conf. on Combinatorics, Graph Theory and Applications (EuroComb 2017), Viena, 2017, Electronic Notes in Discrete Mathematics 61 (2017), 623–629. |
Reference:
|
[13] Konečný M.: Semigroup-valued Metric Spaces.Master thesis in preparation available at arXiv:1810.08963 [math.CO], 2018. |
Reference:
|
[14] Mackey G. W.: Ergodic theory and virtual groups.Math. Ann. 166 (1966), no. 3, 187–207. MR 0201562, 10.1007/BF01361167 |
Reference:
|
[15] Nešetřil J.: Metric spaces are Ramsey.European J. Comb. 28 (2007), no. 1, 457–468. MR 2261831, 10.1016/j.ejc.2004.11.003 |
Reference:
|
[16] Nešetřil J., Rödl V.: A structural generalization of the Ramsey theorem.Bull. Amer. Math. Soc. 83 (1977), no. 1, 127–128. MR 0422035, 10.1090/S0002-9904-1977-14212-2 |
Reference:
|
[17] Otto M.: Amalgamation and symmetry: From local to global consistency in the finite.available at arXiv:1709.00031 [math.CO] (2017), 49 pages. |
Reference:
|
[18] Pestov V. G.: A theorem of Hrushovski-Solecki-Vershik applied to uniform and coarse embeddings of the Urysohn metric space.Topology Appl. 155 (2008), no. 14, 1561–1575. MR 2435149, 10.1016/j.topol.2008.03.002 |
Reference:
|
[19] Rosendal Ch.: Finitely approximate groups and actions. Part I: The Ribes-Zalesskiĭ property.J. Symbolic Logic 76 (2011), no. 4, 1297–1306. MR 2895386, 10.2178/jsl/1318338850 |
Reference:
|
[20] Ribes L., Zalesskii P. A.: On the profinite topology on a free group.Bull. London Math. Soc. 25 (1993), no. 1, 37–43. MR 1190361, 10.1112/blms/25.1.37 |
Reference:
|
[21] Sabok M.: Automatic continuity for isometry groups.J. Inst. Math. Jussieu (online 2017), 30 pages. MR 3936642 |
Reference:
|
[22] Siniora D., Solecki S.: Coherent extension of partial automorphisms, free amalgamation, and automorphism groups.available at arXiv:1705.01888v3 [math.LO] (2018), 29 pages. |
Reference:
|
[23] Solecki S.: Extending partial isometries.Israel J. Math. 150 (2005), no. 1, 315–331. MR 2255813, 10.1007/BF02762385 |
Reference:
|
[24] Solecki S.: Notes on a strengthening of the Herwig–Lascar extension theorem.available at http://www.math.uiuc.edu/${\scriptstyle\mathtt \sim}$ssolecki/papers/HervLascfin.pdf (2009), 16 pages. |
Reference:
|
[25] Vershik A. M.: Globalization of the partial isometries of metric spaces and local approximation of the group of isometries of Urysohn space.Topology Appl. 155 (2008), no. 14, 1618–1626. MR 2435153, 10.1016/j.topol.2008.03.007 |
. |