Previous |  Up |  Next

Article

Title: A bi-average tree solution for probabilistic communication situations with fuzzy coalition (English)
Author: Li, Xianghui
Author: Sun, Hao
Author: Hou, Dongshuang
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 55
Issue: 1
Year: 2019
Pages: 63-80
Summary lang: English
.
Category: math
.
Summary: A probabilistic communication structure considers the setting with communication restrictions in which each pair of players has a probability to communicate directly. In this paper, we consider a more general framework, called a probabilistic communication structure with fuzzy coalition, that allows any player to have a participation degree to cooperate within a coalition. A maximal product spanning tree, indicating a way of the greatest possibility to communicate among the players, is introduced where the unique path from one player to another is optimal. We present a feasible procedure to find the maximal product spanning trees. Furthermore, for games under this model, a new solution concept in terms of the average tree solution is proposed and axiomatized by defining a restricted game in Choquet integral form. (English)
Keyword: probabilistic communication situation
Keyword: fuzzy coalition
Keyword: average tree solution
Keyword: maximal product spanning tree
MSC: 05C72
MSC: 91A12
idZBL: Zbl 07088879
idMR: MR3935415
DOI: 10.14736/kyb-2019-1-0063
.
Date available: 2019-05-07T11:07:11Z
Last updated: 2020-02-27
Stable URL: http://hdl.handle.net/10338.dmlcz/147706
.
Reference: [1] Aubin, J. P.: Coeur et valeur des jeux flous à paiements latéraux..Comptes Rendus Hebdomadaires des Séances de 1'Académie des Sciences 279-A (1974), 891-894. Zbl 0297.90128, MR 0368799
Reference: [2] Bhutani, K. R., Rosenfeld, A.: Strong arcs in fuzzy graphs..Inform. Sci. 152 (2003), 319-322. MR 1981135, 10.1016/s0020-0255(02)00411-5
Reference: [3] Borm, P., Owen, G., Tijs, S.: On the position value for communication situations..SIAM J. Discrete Math. 5 (1992), 305-320. MR 1172740, 10.1137/0405023
Reference: [4] Butnariu, D.: Stability and Shapley value for an n-persons fuzzy game..Fuzzy Sets and Systems 4 (1980), 63-72. MR 0580834, 10.1016/0165-0114(80)90064-0
Reference: [5] Calvo, E., Lasaga, J., Nouweland, A. van den: Values of games with probabilistic graphs..Math. Social Sci. 37 (1999), 79-95. MR 1662494, 10.1016/s0165-4896(98)00013-4
Reference: [6] Gallardo, J. M., Jiménez, N., Jiménez-Losada, A., Lebrón, E.: Games with fuzzy authorization structure: A Shapley value..Fuzzy Sets and Systems 272 (2015), 115-125. MR 3339103, 10.1016/j.fss.2014.09.002
Reference: [7] Gómez, D., González-Arangüena, E., Manuel, C., Owen, G.: A value for generalized probabilistic communication situations..Europ. J. Oper. Res. 190 (2008), 539-556. MR 2412989, 10.1016/j.ejor.2007.06.040
Reference: [8] Herings, P. J. J., Laan, G. van der, Talman, D.: The average tree solution for cycle-free graph games..Games and Economic Behavior 62 (2008), 77-92. MR 2384857, 10.1016/j.geb.2007.03.007
Reference: [9] Jiménez-Losada, A., Fernández, J. R., Ordóñez, M., Grabisch, M.: Games on fuzzy communication structures with Choquet players..Europ. J. Oper. Res. 207 (2010), 836-847. MR 2670614, 10.1016/j.ejor.2010.06.014
Reference: [10] Li, X., Sun, H., Hou, D: On the position value for communication situations with fuzzy coalition..J. Intell. Fuzzy Systems 33 (2017), 113-124. 10.3233/jifs-16117
Reference: [11] Myerson, R. B.: Graphs and cooperation in games..Mathematics of Operations Research 2 (1977), 225-229. MR 0459661, 10.1287/moor.2.3.225
Reference: [12] Tsurumi, M., Tanino, T., Inuiguchi, M.: A Shapley function on a class of cooperative fuzzy games..Europ. J. Oper. Res. 129 (2001), 596-618. MR 1807816, 10.1016/s0377-2217(99)00471-3
Reference: [13] Yu, X., Zhang, Q.: The fuzzy core in games with fuzzy coalitions..J. Computat. Appl. Math. 230 (2009), 173-186. MR 2532301, 10.1016/j.cam.2008.11.004
Reference: [14] Xu, G., Li, X., Sun, H., Su, J.: The Myerson value for cooperative games on communication structure with fuzzy coalition..J. Intell. Fuzzy Systems 33 (2017), 27-39. 10.3233/jifs-16080
.

Files

Files Size Format View
Kybernetika_55-2019-1_5.pdf 559.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo