Previous |  Up |  Next

Article

Title: $H_\infty $ sliding mode control for Markov jump systems with interval time-varying delays and general transition probabilities (English)
Author: Li, Lingchun
Author: Zhang, Guangming
Author: Ou, Meiying
Author: Wang, Yujie
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 55
Issue: 1
Year: 2019
Pages: 134-151
Summary lang: English
.
Category: math
.
Summary: This paper is devoted to design $H_\infty$ sliding mode controller for continuous-time Markov jump systems with interval time-varying delays and general transition probabilities. An integral sliding surface is constructed and its reachability is guaranteed via a sliding mode control law. Meanwhile, a linearisation strategy is applied to treat the nonlinearity induced by general transition probabilities. Using a separation method based on Finsler lemma to eliminate the coupling among Lyapunov variables and controller parameters, sufficient conditions for asymptotically stochastic stability of sliding mode dynamics are formulated in terms of linear matrix inequalities. Finally, a single-link robot arm system is simulated to demonstrate the effectiveness of the proposed method. (English)
Keyword: Markov jump systems
Keyword: time-varying delays
Keyword: sliding mode control
MSC: 93D09
MSC: 93D15
MSC: 93E03
idZBL: Zbl 07088882
idMR: MR3935418
DOI: 10.14736/kyb-2019-1-0134
.
Date available: 2019-05-07T11:13:45Z
Last updated: 2020-02-27
Stable URL: http://hdl.handle.net/10338.dmlcz/147709
.
Reference: [1] Liu, M., Shi, P., Zhang, L., Zhao, X.: Fault-tolerant control for nonlinear Markovian jump systems via proportional and derivative sliding mode observer technique..IEEE Transa. Circuits Systems I: Regular Papers 58 (2011), 2755-2764. MR 2896078, 10.1109/tcsi.2011.2157734
Reference: [2] Shi, Y., Yu, B.: Output feedback stabilization of networked control systems with random delays modeled by Markov chains..IEEE Trans. Automat. Control 54 (2009), 1668-1674. MR 2535768, 10.1109/tac.2009.2020638
Reference: [3] Sworder, D. D., Rogers, R. O.: An LQ-solution to a control problem associated with a solar thermal central receiver..EEE Trans. Automat. Control 28 (1983), 971-978. 10.1109/tac.1983.1103151
Reference: [4] Shi, P., Li, F.: A survey on Markovian jump systems: Modeling and design..Int. J. Control Automat. Systems 13 (2015), 1-16. 10.1007/s12555-014-0576-4
Reference: [5] Li, F., Shi, P., Lim, C. C., Wu, L.: Fault detection filtering for nonhomogeneous Markovian jump systems via fuzzy approach..IEEE Trans. Fuzzy Systems 26 (2018), 131-141. 10.1109/tfuzz.2016.2641022
Reference: [6] Farias, D. P. De, Geromel, J. C., Val, J. B. R. Do, Costa, O. L. V.: Output feedback control of Markov jump linear systems in continuous-time..IEEE Trans. Automat. Control 45 (2000), 944-949. MR 1774139, 10.1109/9.855557
Reference: [7] Shen, M., Yan, S., Zhang, G., Park, J. H.: Finite-time $H_{\infty}$ static output control of Markov jump systems with an auxiliary approach..Appl. Math. Comput. 273 (2016), 553-561. MR 3427776, 10.1016/j.amc.2015.10.038
Reference: [8] Li, F., Shi, P., Lim, C. C., Wu, L.: Fault detection filtering for nonhomogeneous Markovian jump systems via fuzzy approach..IEEE Trans. Fuzzy Systems 26 (2016), 131-144. 10.1109/tfuzz.2016.2641022
Reference: [9] Xiong, J., Lam, J., Gao, H.: On robust stabilization of Markovian jump systems with uncertain switching probabilities..Automatica 41 (2005), 897-903. MR 2157722, 10.1016/j.automatica.2004.12.001
Reference: [10] Kao, Y., Xie, J., Wang, C.: Stabilisation of mode-dependent singular Markovian jump systems with generally uncertain transition rates..Applied Mathematics and Computation 245 (2014), 243-254. MR 3260712, 10.1016/j.amc.2014.06.064
Reference: [11] Zhang, Y., Shi, Y., Shi, P.: Robust and non-fragile finite-time $H_{\infty}$ control for uncertain Markovian jump nonlinear systems..Appl. Math. Comput. 279 (2016), 125-138. MR 3458010, 10.1016/j.amc.2016.01.012
Reference: [12] Wu, H., Cai, K.: Mode-independent robust stabilization for uncertain Markovian jump nonlinear systems via fuzzy control..IEEE Trans. Syst., Man, Cybern.-Part B: Cybern. 36 (2006), 509-519. 10.1109/tsmcb.2005.862486
Reference: [13] Zhang, L., Boukas, E. K.: Stability and stabilization of Markovian jump linear systems with partly unknown transition probabilities..Automatica 45 (2009), 463-468. MR 2527344, 10.1016/j.automatica.2008.08.010
Reference: [14] Li, L., Shen, M., Zhang, G., Yan, S.: $H_\infty$ control of Markov jump systems with time-varying delay and incomplete transition probabilities..Appl. Math. Comput. 301 (2017), 95-106. MR 3598588, 10.1016/j.amc.2016.12.027
Reference: [15] Li, L., Zhang, Q.: Finite-time $H_{\infty}$ control for singular Markovian jump systems with partly unknown transition rates..Appl. Math. Modell. 40 (2016), 302-314. MR 3432088, 10.1016/j.apm.2015.04.044
Reference: [16] Shen, M., Zhang, G., Yuan, Y., Mei, L.: Non-fragile sampled data $ H_\infty $ filtering of general continuous Markov jump linear systems..Kybernetika 50 (2014), 580-595. MR 3275086, 10.14736/kyb-2014-4-0580
Reference: [17] Niu, Y., Ho, W., Wang, X.: Robust $ H_ {\infty} $ control for nonlinear stochastic systems: a sliding-mode approach..IEEE Trans. Automat. Control 53 (2008), 1695-1701. MR 2446384, 10.1109/tac.2008.929376
Reference: [18] B, Chen, Niu, Y., Zou, Y.: Adaptive sliding mode control for stochastic Markovian jumping systems with actuator degradation..Automatica 49 (2013), 1748-1754. MR 3049223, 10.1016/j.automatica.2013.02.014
Reference: [19] Mobayen, S., Tchier, F.: A new LMI-based robust finite-time sliding mode control strategy for a class of uncertain nonlinear systems..Kybernetika 51 (2015), 1035-1048. MR 3453684, 10.14736/kyb-2015-6-1035
Reference: [20] Park, P.: A delay-dependent stability criterion for systems with uncertain time-invariant delays..IEEE Trans. Automat. Control 44 (1999), 876-877. MR 1684455, 10.1109/9.754838
Reference: [21] Fridman, E., Shaked, U.: A descriptor system approach to $H_{\infty}$ control of linear time-delay systems..Automatica 47 (2002), 253-270. MR 1881892, 10.1109/9.983353
Reference: [22] Wang, L., Xie, Y., Wei, Z., Peng, J: Stability analysis and absolute synchronization of a three-unit delayed neural network..Kybernetika 51 (2015), 800-813. MR 3445985, 10.14736/kyb-2015-5-0800
Reference: [23] Benabdallah, A.: A separation principle for the stabilization of a class of time delay nonlinear systems..Kybernetika 51 (2015), 99-111. MR 3333835, 10.14736/kyb-2015-1-0099
Reference: [24] Nirmala, R. Joice, Balachandran, K.: Relative controllability of nonlinear fractional delay integrodifferential systems with multiple delays in control..Kybernetika 53 (2017), 161-178. MR 3638562, 10.14736/kyb-2017-1-0161
Reference: [25] Ma, Z., Sun, Y., Shi, H.: Finite-time outer synchronization between two complex dynamical networks with time delay and noise perturbation..Kybernetika 52 (2016), 607-628. MR 3565772, 10.14736/kyb-2016-4-0607
Reference: [26] Ma, L., Xu, M., Jia, R., Ye, H: Exponential $ H_ {\infty} $ filter design for stochastic Markovian jump systems with both discrete and distributed time-varying delays..Kybernetika 50 (2014), 491-511. MR 3275081, 10.14736/kyb-2014-4-0491
Reference: [27] Zhang, C., He, Y., Jiang, L.: Stability analysis of systems with time-varying delay via relaxed integral inequalities..Systems Control Lett. 92 (2016), 52-61. MR 3498360, 10.1016/j.sysconle.2016.03.002
Reference: [28] Seuret, A., Gouaisbaut, F.: Wirtinger-based integral inequality: application to time-delay systems..Automatica 49 (2013), 2860-2866. MR 3084475, 10.1016/j.automatica.2013.05.030
Reference: [29] Park, P., Ko, J., Jeong, C.: Reciprocally convex approach to stability of systems with time-varying delays..Kybernetika 47 (2011), 235-238. MR 2878269, 10.1016/j.automatica.2010.10.014
Reference: [30] Kao, Y., Wang, C., Xie, J., Karimi, H. R., Li, W.: $H_{\infty}$ sliding mode control for uncertain neutral-type stochastic systems with Markovian jumping parameters..Inform. Sci. 304 (2015), 200-211. MR 3339551, 10.1016/j.ins.2015.03.047
Reference: [31] Wu, L., Su, X., Shi, P.: Sliding mode control with bounded $L_{2}$ gain performance of Markovian jump singular time-delay systems..Automatica 48 (2012), 1929-1933. MR 2950452, 10.1016/j.automatica.2012.05.064
Reference: [32] Ma, L., Wang, C., Ding, S., Dong, L.: Integral sliding mode control for stochastic Markovian jump system with time-varying delay..Neurocomputing 179 (2016), 118-125. 10.1016/j.neucom.2015.11.071
Reference: [33] Su, X., Liu, X., Shi, P., Song, Y.: Sliding mode control of hybrid switched systems via an event-triggered mechanism..Automatica 90 (2018), 294-303. MR 3764410, 10.1016/j.automatica.2017.12.033
Reference: [34] Skelton, R., Iwazaki, T., Grigoriadis, K.: A United Algebric Approach to Linear Control Design..Taylor and Francis Series in Systems and Control, 1998. MR 1484416, 10.1002/rnc.694
Reference: [35] Oliveira, M. C. D: A robust version of the elimination lemma..In: 16th Triennial World Congress (2005), Prague, pp. 310-314. 10.3182/20050703-6-cz-1902.00996
.

Files

Files Size Format View
Kybernetika_55-2019-1_8.pdf 589.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo