Previous |  Up |  Next

Article

Title: On the endomorphism ring and Cohen-Macaulayness of local cohomology defined by a pair of ideals (English)
Author: Freitas, Thiago H.
Author: Jorge Pérez, Victor H.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 69
Issue: 2
Year: 2019
Pages: 453-470
Summary lang: English
.
Category: math
.
Summary: Let $\mathfrak {a}$, $I$, $J$ be ideals of a Noetherian local ring $(R,\mathfrak {m},k)$. Let $M$ and $N$ be finitely generated $R$-modules. We give a generalized version of the Duality Theorem for Cohen-Macaulay rings using local cohomology defined by a pair of ideals. We study the behavior of the endomorphism rings of $H^t_{I,J}(M)$ and $D(H^t_{I,J}(M))$, where $t$ is the smallest integer such that the local cohomology with respect to a pair of ideals is nonzero and $D(-):= {\rm Hom}_R(-,E_R(k))$ is the Matlis dual functor. We show that if $R$ is a $d$-dimensional complete Cohen-Macaulay ring and $H^i_{I,J}(R)=0$ for all $i\neq t$, the natural homomorphism $R\rightarrow {\rm Hom}_R(H^t_{I,J}(K_R), H^t_{I,J}(K_R))$ is an isomorphism, where $K_R$ denotes the canonical module of $R$. Also, we discuss the depth and Cohen-Macaulayness of the Matlis dual of the top local cohomology modules with respect to a pair of ideals. (English)
Keyword: local cohomology
Keyword: Matlis duality
Keyword: endomorphism ring
MSC: 13C14
MSC: 13D45
idZBL: Zbl 07088798
idMR: MR3959958
DOI: 10.21136/CMJ.2018.0386-17
.
Date available: 2019-05-24T08:59:52Z
Last updated: 2021-07-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147738
.
Reference: [1] Aghapournahr, M., Ahmadi-Amoli, K., Sadeghi, M. Y.: The concept of {$(I,J)$}-Cohen-Macaulay modules.J. Algebr. Syst. 3 (2015), 1-10. MR 3534204, 10.22044/JAS.2015.482
Reference: [2] Ahmadi-Amoli, K., Sadeghi, M. Y.: On the local cohomology modules defined by a pair of ideals and Serre subcategory.J. Math. Ext. 7 (2013), 47-62. Zbl 1327.13056, MR 3248761
Reference: [3] Brodmann, M. P., Sharp, R. Y.: Local Cohomology: an Algebraic Introduction with Geometric Applications.Cambridge Studies in Advanced Mathematics 39, Cambridge University Press, Cambridge (1998). Zbl 0903.13006, MR 1613627, 10.1017/CBO9780511629204
Reference: [4] Bruns, W., Herzog, J.: Cohen-Macaulay Rings.Cambridge Studies in Advanced Mathematics 39, Cambridge University Press, Cambridge (1998). Zbl 0909.13005, MR 1251956, 10.1017/CBO9780511608681
Reference: [5] Chu, L.: Top local cohomology modules with respect to a pair of ideals.Proc. Am. Math. Soc. 139 (2011), 777-782. Zbl 1210.13018, MR 2745630, 10.1090/S0002-9939-2010-10471-9
Reference: [6] Chu, L.-Z., Wang, Q.: Some results on local cohomology modules defined by a pair of ideals.J. Math. Kyoto Univ. 49 (2009), 193-200. Zbl 1174.13024, MR 2531134, 10.1215/kjm/1248983036
Reference: [7] Eghbali, M., Schenzel, P.: On an endomorphism ring of local cohomology.Commun. Algebra 40 (2012), 4295-4305. Zbl 1273.13027, MR 2982939, 10.1080/00927872.2011.588982
Reference: [8] Freitas, T. H., Pérez, V. H. Jorge: On formal local cohomology modules with respect to a pair of ideals.J. Commut. Algebra 8 (2016), 337-366. Zbl 1348.13026, MR 3546002, 10.1216/JCA-2016-8-3-337
Reference: [9] Freitas, T. H., Pérez, V. H. Jorge: Artinianness and finiteness of formal local cohomology modules with respect to a pair of ideals.Beitr. Algebra Geom. 58 (2017), 319-340. Zbl 1387.13040, MR 3651656, 10.1007/s13366-016-0322-6
Reference: [10] Hartshorne, R.: Local Cohomology.Lecture Notes in Mathematics 41, Springer, Berlin (1967). Zbl 0185.49202, MR 224620, 10.1007/BFb0073971
Reference: [11] Hellus, M., Schenzel, P.: On cohomologically complete intersections.J. Algebra 320 (2008), 3733-3748. Zbl 1157.13012, MR 2457720, 10.1016/j.jalgebra.2008.09.006
Reference: [12] Hellus, M., Stückrad, J.: On endomorphism rings of local cohomology modules.Proc. Am. Math. Soc. 136 (2008), 2333-2341. Zbl 1152.13011, MR 2390499, 10.1090/S0002-9939-08-09240-X
Reference: [13] Hochster, M., Huneke, C.: Indecomposable canonical modules and connectedness.Commutative Algebra: Syzygies, Multiplicities, and Birational Algebra W. J. Heinzer et al. Contemp. Math. 159, American Mathematical Society, Providence (1994), 197-208. Zbl 0809.13003, MR 1266184, 10.1090/conm/159
Reference: [14] Iyengar, S. B., Leuschke, G. J., Leykin, A., Miller, C., Miller, E., Singh, A. K., Walther, U.: Twenty-Four Hours of Local Cohomology.Graduate Studies in Mathematics 87, American Mathematical Society, Providence (2007). Zbl 1129.13001, MR 2355715, 10.1090/gsm/087
Reference: [15] Khashyarmanesh, K.: On the endomorphism rings of local cohomology modules.Can. Math. Bull. 53 (2010), 667-673. Zbl 1203.13019, MR 2761689, 10.4153/CMB-2010-072-1
Reference: [16] Mafi, A.: Some criteria for the Cohen-Macaulay property and local cohomology.Acta Math. Sin., Engl. Ser. 25 (2009), 917-922. Zbl 1183.13025, MR 2511535, 10.1007/s10114-009-7418-y
Reference: [17] Mahmood, W.: On endomorphism ring of local cohomology modules.Available at https://arxiv.org/abs/1308.2584.
Reference: [18] Payrovi, S., Parsa, M. Lotfi: Artinianness of local cohomology modules defined by a pair of ideals.Bull. Malays. Math. Sci. Soc. (2) 35 (2012), 877-883. Zbl 1253.13018, MR 2960891
Reference: [19] Payrovi, S., Parsa, M. Lotfi: Finiteness of local cohomology modules defined by a pair of ideals.Commun. Algebra 41 (2013), 627-637. Zbl 1263.13016, MR 3011786, 10.1080/00927872.2011.631206
Reference: [20] Talemi, A. Pour Eshmanan, Tehranian, A.: Local cohomology with respect to a cohomologically complete intersection pair of ideals.Iran. J. Math. Sci. Inform. 9 (2014), 7-13. Zbl 1314.13035, MR 3330480, 10.7508/ijmsi.2014.02.002
Reference: [21] Sadeghi, M. Y., Eghbali, M., Ahmadi-Amoli, K.: On top local cohomology modules, Matlis duality and tensor products.(to appear) in J. Algebra Appl. 10.1142/S0219498819501792
Reference: [22] Schenzel, P.: On birational Macaulayfications and Cohen-Macaulay canonical modules.J. Algebra 275 (2004), 751-770. Zbl 1103.13014, MR 2052635, 10.1016/j.jalgebra.2003.12.016
Reference: [23] Schenzel, P.: On endomorphism rings and dimensions of local cohomology modules.Proc. Am. Math. Soc. 137 (2009), 1315-1322. Zbl 1163.13010, MR 2465654, 10.1090/S0002-9939-08-09676-7
Reference: [24] Schenzel, P.: Matlis duals of local cohomology modules and their endomorphism rings.Arch. Math. 95 (2010), 115-123. Zbl 1200.13028, MR 2674247, 10.1007/s00013-010-0149-6
Reference: [25] Schenzel, P.: On the structure of the endomorphism ring of a certain local cohomology module.J. Algebra 344 (2011), 229-245. Zbl 1236.13016, MR 2831938, 10.1016/j.jalgebra.2011.07.014
Reference: [26] Strooker, J. R.: Homological Questions in Local Algebra.London Mathematical Society Lecture Note Series 145, Cambridge University Press, Cambridge (1990). Zbl 0786.13008, MR 1074178, 10.1017/CBO9780511629242
Reference: [27] Takahashi, R., Yoshino, Y., Yoshizawa, T.: Local cohomology based on a nonclosed support defined by a pair of ideals.J. Pure Appl. Algebra 213 (2009), 582-600. Zbl 1160.13013, MR 2483839, 10.1016/j.jpaa.2008.09.008
Reference: [28] Tehranian, A., Talemi, A. Pour Eshmanan: Non-Artinian local cohomology with respect to a pair of ideals.Algebra Colloq. 20 (2013), 637-642. Zbl 1282.13038, MR 3116792, 10.1142/S1005386713000606
Reference: [29] Tehranian, A., Talemi, A. Pour Eshmanan: Filter depth and cofiniteness of local cohomology modules defined by a pair of ideals.Algebra Colloq. 21 (2014), 597-604. Zbl 1304.13037, MR 3266511, 10.1142/S1005386714000546
.

Files

Files Size Format View
CzechMathJ_69-2019-2_14.pdf 345.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo