Previous |  Up |  Next

Article

Title: Inclusion relations between harmonic Bergman-Besov and weighted Bloch spaces on the unit ball (English)
Author: Doğan, Ömer Faruk
Author: Üreyen, Adem Ersin
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 69
Issue: 2
Year: 2019
Pages: 503-523
Summary lang: English
.
Category: math
.
Summary: We consider harmonic Bergman-Besov spaces $b^p_\alpha $ and weighted Bloch spaces $b^\infty _\alpha $ on the unit ball of $\mathbb {R}^n$ for the full ranges of parameters $0<p<\infty $, $\alpha \in \mathbb {R}$, and determine the precise inclusion relations among them. To verify these relations we use Carleson measures and suitable radial differential operators. For harmonic Bergman spaces various characterizations of Carleson measures are known. For weighted Bloch spaces we provide a characterization when $\alpha >0$. (English)
Keyword: harmonic Bergman-Besov space
Keyword: weighted harmonic Bloch space
Keyword: Carleson measure
Keyword: Berezin transform
MSC: 31B05
MSC: 42B35
idZBL: Zbl 07088802
idMR: MR3959962
DOI: 10.21136/CMJ.2018.0422-17
.
Date available: 2019-05-24T09:01:43Z
Last updated: 2021-07-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147742
.
Reference: [1] Axler, S., Bourdon, P., Ramey, W.: Harmonic Function Theory. Graduate Texts in Mathematics 137.Springer, New York (2001). Zbl 0959.31001, MR 1805196, 10.1007/b97238
Reference: [2] Choe, B. R., Koo, H., Lee, Y.: Positive Schatten class Toeplitz operators on the ball.Studia Math. 189 (2008), 65-90. Zbl 1155.47030, MR 2443376, 10.4064/sm189-1-6
Reference: [3] Choe, B. R., Lee, Y. J.: Note on atomic decompositions of harmonic Bergman functions.Complex Analysis and Its Applications, OCAMI Studies 2 Imayoshi Yoichi et al. Osaka Municipal Universities Press, Osaka (2007), 11-24. Zbl 1154.47019, MR 2405697
Reference: [4] Choe, B. R., Lee, Y. J., Na, K.: Positive Toeplitz operators from a harmonic Bergman space into another.Tohoku Math. J. 56 (2004), 255-270. Zbl 1077.47028, MR 2053321, 10.2748/tmj/1113246553
Reference: [5] Choe, B. R., Lee, Y. J., Na, K.: Toeplitz operators on harmonic Bergman spaces.Nagoya Math. J. 174 (2004), 165-186. Zbl 1067.47039, MR 2066107, 10.1017/S0027763000008837
Reference: [6] Coifman, R. R., Rochberg, R.: Representation theorems for holomorphic and harmonic functions in $L^p$.Astérisque 77 (1980), 11-66. Zbl 0472.46040, MR 0604369
Reference: [7] Djrbashian, A. E., Shamoian, F. A.: Topics in the Theory of $A^p_\alpha$ Spaces.Teubner Texts in Mathematics, 105, B. G. Teubner, Leipzig (1988). Zbl 0667.30032, MR 1021691
Reference: [8] Doğan, "{O}. F.: Harmonic Besov spaces with small exponents.Available at https://arxiv.org/abs/1808.01451.
Reference: [9] Doğan, Ö. F., Üreyen, A. E.: Weighted harmonic Bloch spaces on the ball.Complex Anal. Oper. Theory 12 (2018), 1143-1177. Zbl 06909437, MR 3800965, 10.1007/s11785-017-0645-9
Reference: [10] Doubtsov, E.: Carleson-Sobolev measures for weighted Bloch spaces.J. Funct. Anal. 258 (2010), 2801-2816. Zbl 1191.32003, MR 2593344, 10.1016/j.jfa.2009.10.028
Reference: [11] Gergün, S., Kaptanoğlu, H. T., Üreyen, A. E.: Reproducing kernels for harmonic Besov spaces on the ball.C. R. Math. Acad. Sci. Paris 347 (2009), 735-738. Zbl 1179.31003, MR 2543973, 10.1016/j.crma.2009.04.016
Reference: [12] Gergün, S., Kaptanoğlu, H. T., Üreyen, A. E.: Harmonic Besov spaces on the ball.Int. J. Math. 27 (2016), Article ID 1650070, 59 pages. Zbl 1354.31005, MR 3546608, 10.1142/S0129167X16500701
Reference: [13] Jevtić, M., Pavlović, M.: Harmonic Bergman functions on the unit ball in $\mathbb R^n$.Acta Math. Hung. 85 (1999), 81-96. Zbl 0956.32004, MR 1713093, 10.1023/A:1006620929091
Reference: [14] Liu, C. W., Shi, J. H.: Invariant mean-value property and $\mathcal M$-harmonicity in the unit ball of $\mathbb R^n$.Acta Math. Sin. 19 (2003), 187-200. Zbl 1031.31001, MR 1968481, 10.1007/s10114-002-0203-9
Reference: [15] Luecking, D. H.: Multipliers of Bergman spaces into Lebesgue spaces.Proc. Edinburgh Math. Soc. 29 (1986), 125-131. Zbl 0587.30048, MR 0829188, 10.1017/S001309150001748X
Reference: [16] Luecking, D. H.: Embedding theorems for spaces of analytic functions via Khinchine's inequality.Michigan Math. J. 40 (1993), 333-358. Zbl 0801.46019, MR 1226835, 10.1307/mmj/1029004756
Reference: [17] Miao, J.: Reproducing kernels for harmonic Bergman spaces of the unit ball.Monatsh. Math. 125 (1998), 25-35. Zbl 0907.46020, MR 1485975, 10.1007/BF01489456
Reference: [18] Oleinik, V. L., Pavlov, B. S.: Embedding theorems for weighted classes of harmonic and analytic functions.J. Soviet Math. 2 (1974), 135-142 English. Russian original translation from Zap. Nauch. Sem. LOMI Steklov 22 1971 94-102. Zbl 0278.46032, MR 0318867, 10.1007/BF01099672
Reference: [19] Ren, G.: Harmonic Bergman spaces with small exponents in the unit ball.Collect. Math. 53 (2002), 83-98. Zbl 1029.46019, MR 1893309
Reference: [20] Yang, W., Ouyang, C.: Exact location of $\alpha$-Bloch spaces in $L_a^p$ and $H^p$ of a complex unit ball.Rocky Mt. J. Math. 30 (2000), 1151-1169. Zbl 0978.32002, MR 1797836, 10.1216/rmjm/1021477265
Reference: [21] Zhao, R., Zhu, K.: Theory of Bergman spaces in the unit ball of $\mathbb{C}^n$.Mém. Soc. Math. Fr. 115 (2008), 103 pages. Zbl 1176.32001, MR 2537698, 0.24033/msmf.427
Reference: [22] Zygmund, A.: Trigonometric Series. Vol. I, II.Cambridge Mathematical Library, Cambridge University Press, Cambridge (2002). Zbl 1084.42003, MR 1963498
.

Files

Files Size Format View
CzechMathJ_69-2019-2_18.pdf 358.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo