[2] Abdeljawad, T., AlHorani, M., Khalil, R.: Conformable fractional semigroups of operators. J. Semigroup Theory Appl. 2015 (2015), 9 pages.
[3] Anderson, D.R., Avery, R.I.:
Fractional-order boundary value problem with Sturm-Liouville boundary conditions. Electronic J. Differential Equ. 2015 (29) (2015), 10 pages.
MR 3335759
[4] Batarfi, H., Losada, J., Nieto, J.J., Shammakh, W.:
Three-point boundary value problems for conformable fractional differential equations. J. Function Spaces 2015 (2015), 6 pages.
MR 3326681
[5] Bayour, B., Torres, D.F.M.:
Existence of solution to a local fractional nonlinear differential equation. J. Comput. Appl. Math. 312 (2016), 127–133.
DOI 10.1016/j.cam.2016.01.014 |
MR 3557866
[6] Benchohra, M., Cabada, A., Seba, D.:
An existence result for nonlinear fractional differential equations on Banach spaces. Boundary Value Problem 2009 (2009), 11 pages.
MR 2525581
[7] Bendouma, B., Cabada, A., Hammoudi, A.: Existence of solutions for conformable fractional problems with nonlinear functional boundary conditions. submitted.
[8] Benkhettou, N., Hassani, S., Torres, D.F.M.:
A conformable fractional calculus on arbitrary time scales. J. King Saud Univ. Sci. 28 (1) (2016), 93–98.
DOI 10.1016/j.jksus.2015.05.003
[9] Cabada, A.:
Green’s Functions in the Theory of Ordinary Differential Equations. Springer, New York, 2014.
MR 3155625
[10] Cabada, A., Hamdi, Z.:
Nonlinear fractional differential equations with integral boundary value conditions. Appl. Appl. Math. Comput. 228 (2014), 251–257.
DOI 10.1016/j.amc.2013.11.057 |
MR 3151912
[11] Cabada, A., Hamdi, Z.:
Existence results for nonlinear fractional Dirichlet problems on the right side of the first eigenvalue. Georgian Math. J. 24 (1) (2017), 41–53.
DOI 10.1515/gmj-2016-0086 |
MR 3607239
[12] Cabada, A., Wang, G.:
Positive solutions of nonlinear fractional differential equations with integral boundary value conditions. J. Math. Anal. Appl. 389 (1) (2012), 403–411.
DOI 10.1016/j.jmaa.2011.11.065 |
MR 2876506
[14] Frigon, M., O’Regan, D.:
Existence results for initial value problems in Banach spaces. Differ. Equ. Dyn. Syst. 2 (1994), 41–48.
MR 1386037
[16] Gilbert, H.:
Existence theorems for first order equations on time scales with $ \Delta -$Carathédory functions. Adv. Difference Equ. 2010 (2010), 20 pages, Article ID 650827.
MR 2747083
[17] Gökdoǧan, A., Ünal, E., Çelik, E.:
Existence and uniqueness theorems for sequential linear conformable fractional differential equations. arXiv preprint, 2015.
MR 3527883
[18] Gözütok, N.Y., Gözütok, U.: Multivariable conformable fractional calculus. math.CA 2017.
[19] Gulsen, T., Yilmaz, E., Goktas, S.:
Conformable fractional Dirac system on time scales. J. Inequ. Appl. 2017 (2017), 1–10.
MR 3669797
[20] Iyiola, O.S., Nwaeze, E.R.:
Some new results on the new conformable fractional calculu swith application using D’Alambert approach. Progr. Fract. Differ. Appl. 2 (2) (2016), 115–122.
DOI 10.18576/pfda/020204
[21] Katugampola, U.N.:
A new fractional derivative with classical properties. preprint, 2014.
MR 3298307
[22] Khaldi, R., Guezane-Lakoud, A.:
Lyapunov inequality for a boundary value problem involving conformable derivative. Progr. Fract. Differ. Appl. 3 (4) (2017), 323–329.
DOI 10.18576/pfda/030407
[24] Kilbas, A., Srivastava, M.H., Trujillo, J.J.:
Theory and Application of Fractional Differential Equations. vol. 204, North Holland Mathematics Studies, 2006.
MR 2218073
[26] Mirandette, B.: Résultats d’existence pour des systèmes d’équations différentielles du premier ordre avec tube-solution. Mémoire de matrise, Université de Montréal, 1996.
[27] Nwaeze, E.R.:
A mean value theorem for the conformable fractional calculus on arbitrary time scales. Progr. Fract. Differ. Appl. 2 (4) (2016), 287–291.
DOI 10.18576/pfda/020406
[29] Pospisil, M., Skripkova, L.P.:
Sturm’s theorems for conformable fractional differential equations. Math. Commun. 21 (2016), 273–281.
MR 3517494
[30] Shi, A., Zhang, S.:
Upper and lower solutions method and a fractional differential equation boundary value problem. Progr. Fract. Differ. Appl. 30 (2009), 13 pages.
MR 2506151
[31] Shugui, K., Huiqing, C., Yaqing, Y., Ying, G.: Existence and uniqueness of the solutions for the fractional initial value problem. Electr. J. Shanghai Normal University (Natural Sciences) 45 (3) (2016), 313–319.
[32] Wang, Y., Zhou, J., Li, Y.:
Fractional Sobolev’s spaces on time scales via conformable fractional calculus and their application to a fractional differential equation on time scales. Adv. Math. Phys. 2016 (2016), 21 pages.
MR 3579208
[33] Yang, X.J., Baleanu, D., Machado, J.A.T.:
Application of the local fractional Fourier series to fractal signals. Discontinuity and complexity in nonlinear physical systems, Springer, Cham, 2014, pp. 63–89.
MR 3204525
[34] Zhang, S., Su, X.:
The existence of a solution for a fractional differential equation with nonlinear boundary conditions considered using upper and lower solutions in reverse order. Comput. Math. Appl. 62 (3) (2011), 1269–1274.
DOI 10.1016/j.camwa.2011.03.008 |
MR 2824713