[1] Bekaert, X., Boulanger, N.: 
Tensor gauge fields in arbitrary representations of $GL(D,\mathbb{R})$. Duality and Poincaré lemma. Comm. Math. Phys. 245 (1) (2004), 27–67. 
DOI 10.1007/s00220-003-0995-1 | 
MR 2036367[2] Bekaert, X., Boulanger, N., Henneaux, M.: 
Consistent deformations of dual formulations of linearized gravity: a no-go result. Phys. Rev. D 67 (4) (2003), 044010. 
DOI 10.1103/PhysRevD.67.044010 | 
MR 1975985[3] Bergshoeff, E.A., Hohm, O., Penas, V.A., Riccioni, F.: 
Dual double field theory. J. High Energy Phys. 26 (6) (2016), 39 pp. 
MR 3538187[4] Campoleoni, A.: Metric-like Lagrangian formulations for higher-spin fields of mixed symmetry. Riv. Nuovo Cimento (3) 33 (2010), 123–253.
[5] Chatzistavrakidis, A., Gautason, F.F., Moutsopoulos, G., Zagermann, M.: 
Effective actions of nongeometric five-branes. Phys. Rev. D 89 (2014), 066004. 
DOI 10.1103/PhysRevD.89.066004[8] Covolo, T., Grabowski, J., Poncin, N.: 
The category of $\mathbb{Z}_2^n$-supermanifolds. J. Math. Phys. 57 (7) (2016), 16 pp., 073503. 
DOI 10.1063/1.4955416 | 
MR 3522262[9] Covolo, T., Kwok, S., Poncin, N.: Differential calculus on $\mathbb{Z}_2^n$-supermanifolds. arXiv:1608.00949 [math.DG].
[12] Dubois-Violette, M., Henneaux, M.: 
Tensor fields of mixed Young symmetry type and N-complexes. Comm. Math. Phys. 226 (2) (2002), 393–418. 
DOI 10.1007/s002200200610 | 
MR 1892459[14] Hull, C.M.: 
Strongly coupled gravity and duality. Nuclear Phys. B 583 (1–2) (2000), 237–259. 
MR 1776849[16] Khoo, F.S.: Generalized Geometry Approaches to Gravity. Ph.D. thesis, Jacobs University, Bremen, Germany, 2016.
[17] Lawson, H.B., Michelsohn, M-L.: 
Spin geometry. Princeton Math. Ser. 38 (1989), xii+427 pp. 
MR 1031992[19] Poncin, N.: 
Towards integration on colored supermanifolds. Banach Center Publ. (2016), 201–217, In: Geometry of jets and fields. 
MR 3642399[20] Pradines, J.: 
Représentation des jets non holonomes par des morphismes vectoriels doubles soudés. C. R. Acad. Sci. Paris Sér. A 278 (1974), 1523–1526. 
MR 0388432 | 
Zbl 0285.58002[22] Voronov, Th.: 
Geometric integration theory on supermanifolds. Soviet Scientific Reviews, Section C: Mathematical Physics Reviews, 9, Part 1 (1991), iv+138 pp. 
MR 1202882