Previous |  Up |  Next

Article

Keywords:
$2k$-symmetric conjuqate points; bounded Mocanu variation; bounded radius rotation; bounded boundary rotation
Summary:
We introduce subclasses of analytic functions of bounded radius rotation, bounded boundary rotation and bounded Mocanu variation with respect to $2k$-symmetric conjugate points and study some of its basic properties.
References:
[1] Eenigenberg, P., Miller, S. S., Mocanu, P. T., Reade, M. O.: On a Briot-Bouquet differential subordination. General Inequalities 3 International Series of Numerical Mathematics 64. Birkhäuser, Basel (1983), 339-348 E. F. Beckenbach et al. DOI 10.1007/978-3-0348-6290-5_26 | MR 0785788 | Zbl 0527.30008
[2] Graham, I., Kohr, G.: Geometric Function Theory in One and Higher Dimensions. Pure and Applied Mathematics 255. Marcel Dekker, New York (2003). DOI 10.1201/9780203911624 | MR 2017933 | Zbl 1042.30001
[3] Miller, S. S., Mocanu, P. T.: Differential Subordinations: Theory and Applications. Pure and Applied Mathematics 225. Marcel Dekker, New York (2000). DOI 10.1201/9781482289817 | MR 1760285 | Zbl 0954.34003
[4] Noor, K. I.: On subclasses of close-to-convex functions of higher order. Int. J. Math. Math. Sci. 15 (1992), 279-289. DOI 10.1155/S016117129200036X | MR 1155521 | Zbl 0758.30010
[5] Padmanabhan, K. S., Parvatham, R.: Properties of a class of functions with bounded boundary rotation. Ann. Pol. Math. 31 (1976), 311-323. DOI 10.4064/ap-31-3-311-323 | MR 0390199 | Zbl 0337.30009
[6] Pinchuk, B.: Functions with bounded boundary rotation. Isr. J. Math. 10 (1971), 6-16. DOI 10.1007/BF02771515 | MR 0301180 | Zbl 0224.30024
[7] Sakaguchi, K.: On a certain univalent mapping. J. Math. Soc. Japan. 11 (1959), 72-75. DOI 10.2969/jmsj/01110072 | MR 0107005 | Zbl 0085.29602
[8] Wang, Z.-G., Gao, C.-Y.: On starlike and convex functions with respect to $2k$-symmetric conjugate points. Tamsui Oxf. J. Math. Sci. 24 (2008), 277-287. MR 2456132 | Zbl 1343.30014
[9] Wang, Z.-G., Gao, C.-Y., Yuan, S.-M.: On certain subclasses of close-to-convex and quasi-convex functions with respect to $k$-symmetric points. J. Math. Anal. Appl. 322 (2006), 97-106. DOI 10.1016/j.jmaa.2005.08.060 | MR 2238151 | Zbl 1102.30015
Partner of
EuDML logo