Previous |  Up |  Next

Article

Title: Hilbert series of the Grassmannian and $k$-Narayana numbers (English)
Author: Braun, Lukas
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388 (print)
ISSN: 2336-1298 (online)
Volume: 27
Issue: 1
Year: 2019
Pages: 27-41
Summary lang: English
.
Category: math
.
Summary: We compute the Hilbert series of the complex Grassmannian using invariant theoretic methods. This is made possible by showing that the denominator of the $q$-Hilbert series is a Vandermonde-like determinant. We show that the $h$-polynomial of the Grassmannian coincides with the $k$-Narayana polynomial. A simplified formula for the $h$-polynomial of Schubert varieties is given. Finally, we use a generalized hypergeometric Euler transform to find simplified formulae for the $k$-Narayana numbers, i.e.~the $h$-polynomial of the Grassmannian. (English)
Keyword: Hilbert series of the Grassmannian
Keyword: Narayana numbers
Keyword: Euler's hypergeometric transform
MSC: 13D40
MSC: 14M15
MSC: 33C90
idZBL: Zbl 1467.13024
idMR: MR3977475
.
Date available: 2019-06-28T14:47:22Z
Last updated: 2021-11-01
Stable URL: http://hdl.handle.net/10338.dmlcz/147766
.
Reference: [1] Berman, J., Köhler, P.: Cardinalities of finite distributive lattices.Mitt. Math. Sem. Giessen, 121, 1976, 103-124, MR 0485609
Reference: [2] Chipalkatti, J.V.: Notes on Grassmannians and Schubert varieties.Queen's Papers in Pure and Applied Mathematics, 13, 119, 2000,
Reference: [3] Derksen, H., Kemper, G.: Computational invariant theory.2015, Springer, MR 3445218
Reference: [4] Ghorpade, S.R.: Note on Hodge's postulation formula for Schubert varieties.Lecture Notes in Pure and Applied Mathematics, 217, 2001, 211-220, Marcel Dekker, New York, MR 1824230
Reference: [5] Gross, B.H., Wallach, N.R.: On the Hilbert polynomials and Hilbert series of homogeneous projective varieties.Arithmetic geometry and automorphic forms, 19, 2011, 253-263, MR 2906911
Reference: [6] Hodge, W.V.D.: A note on $k$-connexes.Mathematical Proceedings of the Cambridge Philosophical Society, 38, 2, 1942, 129-143, Cambridge University Press, MR 0006450, 10.1017/S0305004100021824
Reference: [7] Hodge, W.V.D: Some enumerative results in the theory of forms.Mathematical Proceedings of the Cambridge Philosophical Society, 39, 1, 1943, 22-30, Cambridge University Press, MR 0007739, 10.1017/S0305004100017631
Reference: [8] Hodge, W.V.D., Pedoe, D.: Methods of algebraic geometry, Volume 2.1952, Cambridge University Press, MR 0061846
Reference: [9] Lakshmibai, V., Brown, J.: The Grassmannian Variety: Geometric and Representation-theoretic Aspects.42, 2015, Springer, MR 3408060
Reference: [10] Littlewood, D.E.: On the number of terms in a simple algebraic form.Mathematical Proceedings of the Cambridge Philosophical Society, 38, 4, 1942, 394-396, Cambridge University Press, MR 0009937, 10.1017/S0305004100022088
Reference: [11] MacMahon, P.A.: Combinatory analysis.1916, Cambridge University Press, MR 0141605
Reference: [12] Maier, R.: A generalization of Euler's hypergeometric transformation.Transactions of the American Mathematical Society, 358, 1, 2006, 39-57, MR 2171222, 10.1090/S0002-9947-05-04045-6
Reference: [13] Miller, A.R., Paris, R.B.: Euler-type transformations for the generalized hypergeometric function ${}_{r+2}F_{r+1}(x)$.Zeitschrift für angewandte Mathematik und Physik, 62, 1, 2011, 31-45, MR 2765774
Reference: [14] Miller, A.R., Paris, R.B.: Transformation formulas for the generalized hypergeometric function with integral parameter differences.Rocky Mountain Journal of Mathematics, 43, 1, 2013, 291-327, MR 3065467, 10.1216/RMJ-2013-43-1-291
Reference: [15] Mukai, S.: An introduction to invariants and moduli.2003, Cambridge University Press, Cambridge Studies in Advanced Mathematics 81. MR 2004218
Reference: [16] Nanduri, R.: Hilbert coefficients of Schubert varieties in Grassmannians.Journal of Algebra and Its Applications, 14, 3, 2015, 1550036, MR 3275573, 10.1142/S021949881550036X
Reference: [17] Narayana, T.V.: A partial order and its applications to probability theory.Sankhya: The Indian Journal of Statistics, 1959, 91-98, MR 0106498
Reference: [18] Santos, F., Stump, C., Welker, V.: Noncrossing sets and a Gra\IL2\ss mann associahedron.Forum of Mathematics, Sigma, 5, 2017, 49p, Cambridge University Press, MR 3610869
Reference: [19] Stanley, R.P.: Theory and application of plane partitions. Part 2.Studies in Applied Mathematics, 50, 3, 1971, 259-279, MR 0325407, 10.1002/sapm1971503259
Reference: [20] Sturmfels, B.: Gröbner bases and convex polytopes.1996, American Mathematical Society, University Lecture Series Vol. 8.. MR 1363949
Reference: [21] Sulanke, R.A.: Generalizing Narayana and Schröder numbers to higher dimensions.The Electronic Journal of Combinatorics, 11, 1, 2004, 54p, MR 2097320, 10.37236/1807
Reference: [22] Sulanke, R.A.: Three dimensional Narayana and Schröder numbers.Theoretical computer science, 346, 2--3, 2005, 455-468, MR 2187419, 10.1016/j.tcs.2005.08.014
.

Files

Files Size Format View
ActaOstrav_27-2019-1_3.pdf 437.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo