Previous |  Up |  Next

Article

Title: Note on duality of weighted multi-parameter Triebel-Lizorkin spaces (English)
Author: Ding, Wei
Author: Chen, Jiao
Author: Niu, Yaoming
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 69
Issue: 3
Year: 2019
Pages: 763-779
Summary lang: English
.
Category: math
.
Summary: We study the duality theory of the weighted multi-parameter Triebel-Lizorkin spaces $\dot F^{\alpha ,q}_{p}(\omega ;\mathbb {R}^{n_{1}}\times \mathbb {R}^{n_{2}})$. This space has been introduced and the result $$(\dot F^{\alpha ,q}_{p}(\omega ;\mathbb {R}^{n_{1}}\times \mathbb {R}^{n_{2}}))^{\ast }= {\rm CMO}^{-\alpha ,q'}_{p}(\omega ;\mathbb {R}^{n_{1}}\times \mathbb {R}^{n_{2}})$$ for $0<p\leq 1$ has been proved in Ding, Zhu (2017). In this paper, for $1<p<\infty $, $0<q<\infty $ we establish its dual space $\dot H^{\alpha ,q}_{p}(\omega ;\mathbb {R}^{n_{1}}\times \mathbb {R}^{n_{2}})$. (English)
Keyword: Triebel-Lizorkin space
Keyword: duality
Keyword: weighted multi-parameter
MSC: 42B25
MSC: 42B35
idZBL: Zbl 07088815
idMR: MR3989277
DOI: 10.21136/CMJ.2019.0509-17
.
Date available: 2019-07-24T11:18:35Z
Last updated: 2021-10-04
Stable URL: http://hdl.handle.net/10338.dmlcz/147788
.
Reference: [1] Bownik, M.: Duality and interpolation of anisotropic Triebel-Lizorkin spaces.Math. Z. 259 (2008), 131-169. Zbl 1213.42062, MR 2375620, 10.1007/s00209-007-0216-2
Reference: [2] Carleson, L.: A counterexample for measures bounded on $H^p$ for the bidisc.Mittag-Leffler Report. No. 7 (1974). MR 1555104
Reference: [3] Chang, S.-Y. A., Fefferman, R.: A continuous version of duality of $H^1$ with BMO on the bidisc.Ann. Math. (2) 112 (1980), 179-201. Zbl 0451.42014, MR 0584078, 10.2307/1971324
Reference: [4] Chang, S.-Y. A., Fefferman, R.: The Calderón-Zygmund decomposition on product domains.Am. J. Math. 104 (1982), 455-468. Zbl 0513.42019, MR 0658542, 10.2307/2374150
Reference: [5] Chang, S.-Y. A., Fefferman, R.: Some recent developments in Fourier analysis and $H^p$ theory on product domains.Bull. Am. Math. Soc., New Ser. 12 (1985), 1-43. Zbl 0557.42007, MR 0766959, 10.1090/S0273-0979-1985-15291-7
Reference: [6] Cruz-Uribe, D., Martell, J. M., Pérez, C.: Sharp weighted estimates for classical operators.Adv. Math. 229 (2012), 408-441. Zbl 1236.42010, MR 2854179, 10.1016/j.aim.2011.08.013
Reference: [7] Ding, W., Lu, G.: Duality of multi-parameter Triebel-Lizorkin spaces associated with the composition of two singular integral operators.Trans. Am. Math. Soc. 368 (2016), 7119-7152. Zbl 1338.42025, MR 3471087, 10.1090/tran/6576
Reference: [8] Ding, W., Zhu, Y.: Duality of weighted multiparameter Triebel-Lizorkin spaces.Acta Math. Sci., Ser. B, Engl. Ed. 37 (2017), 1083-1104. Zbl 06873879, MR 3657209, 10.1016/S0252-9602(17)30059-0
Reference: [9] Fan, X., He, J., Li, B., Yang, D.: Real-variable characterizations of anisotropic product Musielak-Orlicz Hardy spaces.Sci. China, Math. 60 (2017), 2093-2154. Zbl 1395.42058, MR 3714569, 10.1007/s11425-016-9024-2
Reference: [10] Fefferman, R.: Strong differentiation with respect to measures.Am. J. Math. 103 (1981), 33-40. Zbl 0475.42019, MR 0601461, 10.2307/2374188
Reference: [11] Fefferman, R.: Calderón-Zygmund theory for product domains: $H^p$ spaces.Proc. Natl. Acad. Sci. USA 83 (1986), 840-843. Zbl 0602.42023, MR 0828217, 10.1073/pnas.83.4.840
Reference: [12] Fefferman, R.: Harmonic analysis on product spaces.Ann. Math. (2) 126 (1987), 109-130. Zbl 0644.42017, MR 0898053, 10.2307/1971346
Reference: [13] Fefferman, R., Stein, E. M.: Singular integrals on product spaces.Adv. Math. 45 (1982), 117-143. Zbl 0517.42024, MR 0664621, 10.1016/S0001-8708(82)80001-7
Reference: [14] Ferguson, S. H., Lacey, M. T.: A characterization of product BMO by commutators.Acta Math. 189 (2002), 143-160. Zbl 1039.47022, MR 1961195, 10.1007/BF02392840
Reference: [15] Frazier, M., Jawerth, B.: A discrete transform and decompositions of distribution spaces.J. Funct. Anal. 93 (1990), 34-170. Zbl 0716.46031, MR 1070037, 10.1016/0022-1236(90)90137-A
Reference: [16] Grafakos, L.: Classical and Modern Fourier Analysis.Pearson/Prentice Hall, Upper Saddle River (2004). Zbl 1148.42001, MR 2449250
Reference: [17] Gundy, R. F., Stein, E. M.: $H^p$ theory for the polydisk.Proc. Natl. Acad. Sci. USA 76 (1979), 1026-1029. Zbl 0405.32002, MR 0524328, 10.1073/pnas.76.3.1026
Reference: [18] Han, Y., Lee, M.-Y., Lin, C.-C., Lin, Y.-C.: Calderón-Zygmund operators on product Hardy spaces.J. Funct. Anal. 258 (2010), 2834-2861. Zbl 1197.42006, MR 2593346, 10.1016/j.jfa.2009.10.022
Reference: [19] Han, Y., Li, J., Lu, G.: Duality of multiparameter Hardy spaces $H^p$ on spaces of homogeneous type.Ann. Sc. Norm. Super. Pisa, Cl. Sci. 9 (2010), 645-685. Zbl 1213.42073, MR 2789471, 10.2422/2036-2145.2010.4.01
Reference: [20] Han, Y., Li, J., Lu, G.: Multiparameter Hardy space theory on Carnot-Carathéodory spaces and product spaces of homogeneous type.Trans. Am. Math. Soc. 365 (2013), 319-360. Zbl 1275.42035, MR 2984061, 10.1090/S0002-9947-2012-05638-8
Reference: [21] Han, Y., Lu, G., Ruan, Z.: Boundedness criterion of Journé's class of singular integrals on multiparameter Hardy spaces.J. Funct. Anal. 264 (2013), 1238-1268. Zbl 1268.42024, MR 3010020, 10.1016/j.jfa.2012.12.006
Reference: [22] Han, Y., Lu, G., Ruan, Z.: Boundedness of singular Integrals in Journé's class on weighted multiparameter Hardy spaces.J. Geom. Anal. 24 (2014), 2186-2228. Zbl 1302.42024, MR 3261735, 10.1007/s12220-013-9421-x
Reference: [23] Han, Y., Lin, C., Lu, G., Ruan, Z., Sawyer, E. T.: Hardy spaces associated with different homogeneities and boundedness of composition operators.Rev. Mat. Iberoam. 29 (2013), 1127-1157. Zbl 1291.42018, MR 3148598, 10.4171/RMI/751
Reference: [24] Journé, J.-L.: Calderón-Zygmund operators on product spaces.Rev. Mat. Iberoam. 1 (1985), 55-91. Zbl 0634.42015, MR 0836284, 10.4171/RMI/15
Reference: [25] Journé, J.-L.: Two problems of Calderón-Zygmund theory on product spaces.Ann. Inst. Fourier 38 (1988), 111-132. Zbl 0638.47026, MR 0949001, 10.5802/aif.1125
Reference: [26] Li, B., Bownik, M., Yang, D., Yuan, W.: Duality of weighted anisotropic Besov and Triebel-Lizorkin spaces.Positivity 16 (2012), 213-244. Zbl 1260.46025, MR 2929088, 10.1007/s11117-011-0119-7
Reference: [27] Li, B. D., Fan, X., Fu, Z. W., Yang, D.: Molecular characterization of anisotropic Musielak-Orlicz Hardy spaces and their applications.Acta Math. Sin., Engl. Ser. 32 (2016), 1391-1414. Zbl 1359.42010, MR 3557405, 10.1007/s10114-016-4741-y
Reference: [28] Liu, J., Yang, D., Yuan, W.: Anisotropic Hardy-Lorentz spaces and their applications.Sci. China, Math. 59 (2016), 1669-1720. Zbl 1352.42028, MR 3536030, 10.1007/s11425-016-5157-y
Reference: [29] Liu, J., Yang, D., Yuan, W.: Anisotropic variable Hardy-Lorentz spaces and their real interpolation.J. Math. Anal. Appl. 456 (2017), 356-393. Zbl 1373.42028, MR 3680972, 10.1016/j.jmaa.2017.07.003
Reference: [30] Liu, J., Yang, D., Yuan, W.: Littlewood-Paley characterizations of anisotropic Hardy-Lorentz spaces.Acta Math. Sci., Ser. B, Engl. Ed. 38 (2018), 1-33. Zbl 06881863, MR 3733274, 10.1016/S0252-9602(17)30115-7
Reference: [31] Lu, G. Z., Zhu, Y. P.: Singular integrals and weighted Triebel-Lizorkin and Besov Spaces of arbitrary number of parameters.Acta Math. Sin., Engl. Ser. 29 (2013), 39-52. Zbl 1261.42030, MR 3001008, 10.1007/s10114-012-1402-7
Reference: [32] Pipher, J.: Journér's covering lemma and its extension to higher dimensions.Duke Math. J. 53 (1986), 683-690. Zbl 0645.42018, MR 0860666, 10.1215/S0012-7094-86-05337-8
Reference: [33] Pisier, G.: Factorization of operators through $L^{p\infty}$ or $L^{p1}$ and non-commutative generalizations.Math. Ann. 276 (1986), 105-136. Zbl 0619.47016, MR 0863711, 10.1007/BF01450929
Reference: [34] Ruan, Z.: Weighted Hardy spaces in three-parameter case.J. Math. Anal. Appl. 367 (2010), 625-639. Zbl 1198.42015, MR 2607286, 10.1016/j.jmaa.2010.02.010
Reference: [35] Triebel, H.: Theory of Function Spaces.Monographs in Mathematics 78, Birkhäuser, Basel (1983). Zbl 0546.46027, MR 0781540, 10.1007/978-3-0346-0416-1
Reference: [36] Verbitsky, I. E.: Imbedding and multiplier theorems for discrete Littlewood-Paley spaces.Pac. J. Math. 176 (1996), 529-556. Zbl 0865.42009, MR 1435004, 10.2140/pjm.1996.176.529
Reference: [37] Yuan, W., Sickel, W., Yang, D.: Morrey and Campanato Meet Besov, Lizorkin and Triebel.Lecture Notes in Mathematics 2005, Springer, Berlin (2010). Zbl 1207.46002, MR 2683024, 10.1007/978-3-642-14606-0
.

Files

Files Size Format View
CzechMathJ_69-2019-3_10.pdf 360.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo