Title:
|
Pseudo-Riemannian weakly symmetric manifolds of low dimension (English) |
Author:
|
Zhang, Bo |
Author:
|
Chen, Zhiqi |
Author:
|
Deng, Shaoqiang |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
69 |
Issue:
|
3 |
Year:
|
2019 |
Pages:
|
811-835 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We give a classification of pseudo-Riemannian weakly symmetric manifolds in dimensions $2$ and $3$, based on the algebraic approach of such spaces through the notion of a pseudo-Riemannian weakly symmetric Lie algebra. We also study the general symmetry of reductive $3$-dimensional pseudo-Riemannian weakly symmetric spaces and particularly prove that a $3$-dimensional reductive $2$-fold symmetric pseudo-Riemannian manifold must be globally symmetric. (English) |
Keyword:
|
pseudo-Riemannian manifold |
Keyword:
|
pseudo-Riemannian weakly symmetric manifold |
Keyword:
|
pseudo-Riemannian weakly symmetric Lie algebra |
Keyword:
|
Lorentzian weakly symmetric manifold |
MSC:
|
22E46 |
MSC:
|
53C30 |
idZBL:
|
Zbl 07088818 |
idMR:
|
MR3989280 |
DOI:
|
10.21136/CMJ.2019.0515-17 |
. |
Date available:
|
2019-07-24T11:19:52Z |
Last updated:
|
2021-10-04 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147791 |
. |
Reference:
|
[1] Berndt, J., Vanhecke, L.: Geometry of weakly symmetric spaces.J. Math. Soc. Japan 48 (1996), 745-760. Zbl 0877.53027, MR 1404821, 10.2969/jmsj/04840745 |
Reference:
|
[2] Chen, Z., Wolf, J. A.: Pseudo-Riemannian weakly symmetric manifolds.Ann. Global Anal. Geom. 41 (2012), 381-390. Zbl 1237.53071, MR 2886205, 10.1007/s10455-011-9291-z |
Reference:
|
[3] Barco, V. del, Ovando, G. P.: Isometric actions on pseudo-Riemannian nilmanifolds.Ann. Global Anal. Geom. 45 (2014), 95-110. Zbl 1295.53081, MR 3165476, 10.1007/s10455-013-9389-6 |
Reference:
|
[4] Deng, S.: An algebraic approach to weakly symmetric Finsler spaces.Can. J. Math. 62 (2010), 52-73. Zbl 1205.53078, MR 2597023, 10.4153/CJM-2010-004-x |
Reference:
|
[5] Deng, S.: On the symmetry of Riemannian manifolds.J. Reine Angew. Math. 680 (2013), 235-256. Zbl 1273.53047, MR 3100956, 10.1515/crelle.2012.040 |
Reference:
|
[6] Helgason, S.: Differential Geometry, Lie Groups, and Symmetric Spaces.Pure and Applied Mathematics 80, Academic Press, New York (1978). Zbl 0451.53038, MR 0514561 |
Reference:
|
[7] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry. Vol. I.Interscience Publishers, John Wiley & Sons, New York (1963). Zbl 0119.37502, MR 0152974 |
Reference:
|
[8] Selberg, A.: Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series.J. Indian Math. Soc., New Ser. 20 (1956), 47-87. Zbl 0072.08201, MR 0088511 |
Reference:
|
[9] Wang, H.-C.: Two-point homogeneous spaces.Ann. Math. 55 (1952), 177-191. Zbl 0048.40503, MR 0047345, 10.2307/1969427 |
Reference:
|
[10] Wolf, J. A.: Harmonic Analysis on Commutative Spaces.Mathematical Surveys and Monographs 142, American Mathematical Society, Providence (2007). Zbl 1156.22010, MR 2328043, 10.1090/surv/142 |
Reference:
|
[11] Yakimova, O. S.: Weakly symmetric Riemannian manifolds with a reductive isometry group.Sb. Math. 195 (2004), 599-614 English. Russian original translation from Mat. Sb. 195 2004 143-160. Zbl 1078.53043, MR 2086668, 10.1070/SM2004v195n04ABEH000817 |
Reference:
|
[12] Ziller, W.: Weakly symmetric spaces.Topics in Geometry. In Memory of Joseph D'Atri Progr. Nonlinear Differ. Equ. Appl. 20, Birkhäuser, Boston Gindikin, S. et al. (1996), 355-368. Zbl 0860.53030, MR 1390324, 10.1007/978-1-4612-2432-7 |
. |