Title:
|
Spectra of uniformity (English) |
Author:
|
Hayut, Yair |
Author:
|
Karagila, Asaf |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
60 |
Issue:
|
2 |
Year:
|
2019 |
Pages:
|
285-298 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We study some limitations and possible occurrences of uniform ultrafilters on ordinals without the axiom of choice. We prove an Easton-like theorem about the possible spectrum of successors of regular cardinals which carry uniform ultrafilters; we also show that this spectrum is not necessarily closed. (English) |
Keyword:
|
uniform ultrafilter |
Keyword:
|
axiom of choice |
Keyword:
|
measurable cardinal |
Keyword:
|
strongly compact cardinal |
MSC:
|
03E25 |
MSC:
|
03E35 |
MSC:
|
03E55 |
idZBL:
|
Zbl 07144894 |
idMR:
|
MR3982473 |
DOI:
|
10.14712/1213-7243.2019.008 |
. |
Date available:
|
2019-08-05T09:53:24Z |
Last updated:
|
2021-07-05 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147812 |
. |
Reference:
|
[1] Apter A. W., Dimitriou I. M., Koepke P.: The first measurable cardinal can be the first uncountable regular cardinal at any successor height.MLQ Math. Log. Q. 60 (2014), no. 6, 471–486. MR 3274975, 10.1002/malq.201110007 |
Reference:
|
[2] Blass A.: A model without ultrafilters.Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 25 (1977), no. 4, 329–331. MR 0476510 |
Reference:
|
[3] Feferman S.: Some applications of the notions of forcing and generic sets.Fund. Math. 56 (1964/1965), 325–345. MR 0176925, 10.4064/fm-56-3-325-345 |
Reference:
|
[4] Herrlich H., Howard P., Keremedis K.: On preimages of ultrafilters in $\mathsf{ZF}$.Comment. Math. Univ. Carolin. 57 (2016), no. 2, 241–252. MR 3513447 |
Reference:
|
[5] Jech T.: Set Theory.Springer Monographs in Mathematics, Springer, Berlin, 2003. Zbl 1007.03002, MR 1940513 |
Reference:
|
[6] Karagila A.: Embedding orders into the cardinals with $\mathsf{DC}_\kappa$.Fund. Math. 226 (2014), no. 2, 143–156. MR 3224118, 10.4064/fm226-2-4 |
Reference:
|
[7] Solovay R. M.: A model of set-theory in which every set of reals is Lebesgue measurable.Ann. of Math. (2) 92 (1970), 1–56. Zbl 0207.00905, MR 0265151, 10.2307/1970696 |
Reference:
|
[8] Truss J.: Models of set theory containing many perfect sets.Ann. Math. Logic 7 (1974), no. 2–3, 197–219. MR 0369068, 10.1016/0003-4843(74)90015-1 |
. |