Previous |  Up |  Next

Article

Title: Spectra of uniformity (English)
Author: Hayut, Yair
Author: Karagila, Asaf
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 60
Issue: 2
Year: 2019
Pages: 285-298
Summary lang: English
.
Category: math
.
Summary: We study some limitations and possible occurrences of uniform ultrafilters on ordinals without the axiom of choice. We prove an Easton-like theorem about the possible spectrum of successors of regular cardinals which carry uniform ultrafilters; we also show that this spectrum is not necessarily closed. (English)
Keyword: uniform ultrafilter
Keyword: axiom of choice
Keyword: measurable cardinal
Keyword: strongly compact cardinal
MSC: 03E25
MSC: 03E35
MSC: 03E55
idZBL: Zbl 07144894
idMR: MR3982473
DOI: 10.14712/1213-7243.2019.008
.
Date available: 2019-08-05T09:53:24Z
Last updated: 2021-07-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147812
.
Reference: [1] Apter A. W., Dimitriou I. M., Koepke P.: The first measurable cardinal can be the first uncountable regular cardinal at any successor height.MLQ Math. Log. Q. 60 (2014), no. 6, 471–486. MR 3274975, 10.1002/malq.201110007
Reference: [2] Blass A.: A model without ultrafilters.Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 25 (1977), no. 4, 329–331. MR 0476510
Reference: [3] Feferman S.: Some applications of the notions of forcing and generic sets.Fund. Math. 56 (1964/1965), 325–345. MR 0176925, 10.4064/fm-56-3-325-345
Reference: [4] Herrlich H., Howard P., Keremedis K.: On preimages of ultrafilters in $\mathsf{ZF}$.Comment. Math. Univ. Carolin. 57 (2016), no. 2, 241–252. MR 3513447
Reference: [5] Jech T.: Set Theory.Springer Monographs in Mathematics, Springer, Berlin, 2003. Zbl 1007.03002, MR 1940513
Reference: [6] Karagila A.: Embedding orders into the cardinals with $\mathsf{DC}_\kappa$.Fund. Math. 226 (2014), no. 2, 143–156. MR 3224118, 10.4064/fm226-2-4
Reference: [7] Solovay R. M.: A model of set-theory in which every set of reals is Lebesgue measurable.Ann. of Math. (2) 92 (1970), 1–56. Zbl 0207.00905, MR 0265151, 10.2307/1970696
Reference: [8] Truss J.: Models of set theory containing many perfect sets.Ann. Math. Logic 7 (1974), no. 2–3, 197–219. MR 0369068, 10.1016/0003-4843(74)90015-1
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_60-2019-2_10.pdf 323.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo