Previous |  Up |  Next

Article

Title: Regularity problem for one class of nonlinear parabolic systems with non-smooth in time principal matrices (English)
Author: Arkhipova, Arina A.
Author: Stará, Jana
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 60
Issue: 2
Year: 2019
Pages: 231-267
Summary lang: English
.
Category: math
.
Summary: Partial regularity of solutions to a class of second order nonlinear parabolic systems with non-smooth in time principal matrices is proved in the paper. The coefficients are assumed to be measurable and bounded in the time variable and VMO-smooth in the space variables uniformly with respect to time. To prove the result, we apply the so-called $A(t)$-caloric approximation method. The method was applied by the authors earlier to study regularity of quasilinear systems. (English)
Keyword: nonlinear parabolic systems
Keyword: regularity problem
MSC: 35B65
MSC: 35D30
MSC: 35K99
idZBL: Zbl 07144892
idMR: MR3982471
DOI: 10.14712/1213-7243.2019.010
.
Date available: 2019-08-05T09:51:15Z
Last updated: 2021-07-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147817
.
Reference: [1] Arkhipova A. A.: On the regularity of the solutions of the Neumann problem for quasilinear parabolic systems.Izv. Ross. Akad. Nauk Ser. Mat. 58 (1994), no. 5, 3–25 (Russian); translation in Russian Acad. Sci. Izv. Math. 45 (1995), no. 2, 231–253. MR 1307308
Reference: [2] Arkhipova A. A.: Reverse Hölder inequalities with boundary integrals and $L_p$-estimates for solutions of nonlinear elliptic and parabolic boundary value problems.Nonlinear Evolution Equations, Amer. Math. Soc. Transl. Ser. 2, 164, Adv. Math. Sci., 22, Amer. Math. Soc. (1995), 15–42. MR 1334137
Reference: [3] Arkhipova A. A.: Regularity of weak solutions to the model Venttsel problem for linear parabolic systems with nonsmooth in time principal matrix: $A(t)$-caloric approximation method.Manuscripta Math. 151 (2016), no. 3–4, 519–548. MR 3556832, 10.1007/s00229-016-0838-y
Reference: [4] Arkhipova A. A.: Regularity of solutions of the model Venttsel' problem for quasilinear parabolic systems with nonsmooth in time principal matrices.Comput. Math. Math. Phys. 57 (2017), no. 3, 476–496. MR 3636034, 10.1134/S0965542517030034
Reference: [5] Arkhipova A. A., Stará J.: Boundary partial regularity for solutions of quasilinear parabolic systems with non smooth in time principal matrix.Nonlinear Anal. 120 (2015), 236–261. MR 3348057
Reference: [6] Arkhipova A. A., Stará J.: Regularity of weak solutions to linear and quasilinear parabolic systems of non-divergence type with non-smooth in time principal matrix: $A(t)$-caloric method.Forum Math. 29 (2017), no. 5, 1039–1064. MR 3692026, 10.1515/forum-2015-0222
Reference: [7] Arkhipova A. A., Stará J.: Regularity problem for $2m$-order quasilinear parabolic systems with non smooth in time principal matrix. $(A(t),m)$-caloric approximation method.Topol. Methods Nonlinear Anal. 52 (2018), no. 1, 111–146. MR 3867982
Reference: [8] Arkhipova A. A., Stará J., John O.: Partial regularity for solutions of quasilinear parabolic systems with nonsmooth in time principal matrix.Nonlinear Anal. 95 (2014), 421–435. MR 3130534
Reference: [9] Bögelein V., Duzaar F., Mingione G.: The boundary regularity of non-linear parabolic systems. I.Ann. Inst. H. Poincaré Anal. Non Linéaire 27 (2010), no. 1, 201–255. MR 2580509, 10.1016/j.anihpc.2009.09.003
Reference: [10] Campanato S.: Equazioni paraboliche del secondo ordine e spazi $L^{2,\theta}(\Omega,\delta)$.Ann. Mat. Pura Appl. (4) 73 (1966), 55–102 (Italian). MR 0213737, 10.1007/BF02415082
Reference: [11] Campanato S.: On the nonlinear parabolic systems in divergence form. Hölder continuity and partial Hölder continuity of the solutions.Ann. Mat. Pura Appl. (4) 137 (1984), 83–122. MR 0772253
Reference: [12] Diening L., Lengeler D., Stroffolini B., Verde A.: Partial regularity for minimizers of quasi-convex functionals with general growth.SIAM J. Math. Anal. 44 (2012), no. 5, 3594–3616. MR 3023424, 10.1137/120870554
Reference: [13] Diening L., Schwarzacher S., Stroffolini B., Verde A.: Parabolic Lipschitz truncation and caloric approximation.Calc. Var. Partial Differential Equations 56 (2017), no. 4, Art. 120, 27 pages. MR 3672391, 10.1007/s00526-017-1209-6
Reference: [14] Dong H., Kim D.: Parabolic and elliptic systems with VMO coefficients.Methods Appl. Anal. 16 (2009), no. 3, 365–388. MR 2650802
Reference: [15] Dong H., Kim D.: Global regularity of weak solutions to quasilinear elliptic and parabolic equations with controlled growth.Communic. Partial Differential Equations 36 (2011), no. 10, 1750–1777. MR 2832162, 10.1080/03605302.2011.571746
Reference: [16] Dong H., Kim D.: On the $L_p$-solvability of higher order parabolic and elliptic systems with BMO coefficients.Arch. Ration. Mech. Anal. 199 (2011), no. 3, 889–941. MR 2771670, 10.1007/s00205-010-0345-3
Reference: [17] Duzaar F., Grotowski J. F.: Optimal interior partial regularity for nonlinear elliptic systems: the method of $A$-harmonic approximation.Manuscripta Math. 103 (2000), no. 3, 267–298. MR 1802484, 10.1007/s002290070007
Reference: [18] Duzaar F., Mingione G.: Second order parabolic systems, optimal regularity, and singular sets of solutions.Ann. Inst. H. Poincaré Anal. Non Linéaire 22 (2005), no. 6, 705–751. MR 2172857, 10.1016/j.anihpc.2004.10.011
Reference: [19] Duzaar F., Steffen K.: Optimal interior and boundary regularity for almost minimizers to elliptic variational integrals.J. Reine Angew. Math. 546 (2002), 73–138. MR 1900994
Reference: [20] Gehring F. W.: The $L^p$-integrability of the partial derivatives of a quasiconformal mapping.Acta Math. 130 (1973), 265–277. MR 0402038, 10.1007/BF02392268
Reference: [21] Giaquinta M., Giusti E.: Partial regularity for solutions to nonlinear parabolic systems.Ann. Mat. Pura Appl. (4) 97 (1973), 253–266. MR 0338568, 10.1007/BF02414914
Reference: [22] Giaquinta M., Struwe M.: On the partial regularity of weak solutions of nonlinear parabolic systems.Math. Z. 179 (1982), no. 4, 437–451. MR 0652852, 10.1007/BF01215058
Reference: [23] Kinnunen J., Lewis J. L.: Higher integrability for parabolic systems of p-Laplacian type.Duke Math. J. 102 (2000), no. 2, 253–271. MR 1749438, 10.1215/S0012-7094-00-10223-2
Reference: [24] Krylov N. V.: Parabolic and elliptic equations with VMO coefficients.Comm. Partial Differential Equations 32 (2007), no. 1–3, 453–475. MR 2304157, 10.1080/03605300600781626
Reference: [25] Krylov N. V.: Lectures on Elliptic and Parabolic Equations in Sobolev Spaces.Graduate Studies in Mathematics, 96, American Mathematical Society, Providence, 2008. MR 2435520, 10.1090/gsm/096
Reference: [26] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N.: Linear and Quasilinear Equations of Parabolic Type.Translations of Mathematical Monographs, 23, American Mathematical Society, Providence, 1968. MR 0241822, 10.1090/mmono/023
Reference: [27] Mingione G.: The singular set of solutions to non differentiable elliptic systems.Arch. Ration. Mech. Anal. 166 (2003), no. 4, 287–301. MR 1961442, 10.1007/s00205-002-0231-8
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_60-2019-2_8.pdf 435.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo