[2] Arazy, J., Upmeier, H.:
Weyl Calculus for Complex and Real Symmetric Domains. Harmonic analysis on complex homogeneous domains and Lie groups (Rome, 2001), vol. 13, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 2002, pp. 165–181.
MR 1984098
[3] Arazy, J., Upmeier, H.:
Invariant symbolic calculi and eigenvalues of invariant operators on symmeric domains. Function spaces, interpolation theory and related topics (Lund, 2000), de Gruyter, Berlin, 2002, pp. 151–211.
MR 1943284
[4] Arnal, D., Cahen, M., Gutt, S.:
Representations of compact Lie groups and quantization by deformation. Acad. R. Belg. Bull. Cl. Sc. 3e série LXXIV 45 (1988), 123–140.
MR 1027456
[8] Brif, C., Mann, A.:
Phase-space formulation of quantum mechanics and quantum-state reconstruction for physical systems with Lie-group symmetries. Phys. Rev. A 59 (2) (1999), 971–987.
DOI 10.1103/PhysRevA.59.971 |
MR 1679730
[13] Cahen, B.:
Berezin transform and Stratonovich-Weyl correspondence for the multi-dimensional Jacobi group. Rend. Sem. Mat. Univ. Padova 136 (2016), 69–93.
DOI 10.4171/RSMUP/136-7 |
MR 3593544
[17] Figueroa, H., Gracia-Bondìa, J.M., Vàrilly, J.C.:
Moyal quantization with compact symmetry groups and noncommutative analysis. J. Math. Phys. 31 (1990), 2664–2671.
DOI 10.1063/1.528967 |
MR 1075750
[19] Gracia-Bondìa, J.M.:
Generalized Moyal quantization on homogeneous symplectic spaces. Deformation theory and quantum groups with applications to mathematical physics, Amherst, MA, 1990, Contemp. Math., 134, Amer. Math. Soc., Providence, RI, 1992, pp. 93–114.
MR 1187280
[21] Helgason, S.:
Differential Geometry, Lie Groups and Symmetric Spaces. Graduate Studies in Mathematics, vol. 34, American Mathematical Society, Providence, Rhode Island, 2001.
DOI 10.1090/gsm/034 |
MR 1834454 |
Zbl 0993.53002
[22] Kirillov, A.A.:
Lectures on the Orbit Method. Graduate Studies in Mathematics, vol. 64, American Mathematical Society, Providence, Rhode Island, 2004.
DOI 10.1090/gsm/064 |
MR 2069175
[23] Kobayashi, T.:
Multiplicity-free theorems of the restrictions of unitary highest weight modules with respect to reductive symmetric pairs. Representation theory and automorphic forms, vol. 255, Birkhäuser Boston, Boston, MA, Progr. Math. ed., 2008, pp. 45–109.
MR 2369496
[24] Kostant, B.:
Quantization and unitary representations. Lecture Notes in Math., vol. 170, Springer-Verlag, Berlin, Heidelberg, New-York, Modern Analysis and Applications ed., 1970, pp. 87–207.
MR 0294568 |
Zbl 0223.53028
[25] Neeb, K-H.:
Holomorphy and Convexity in Lie Theory, de Gruyter Expositions in Mathematics. vol. 28, Walter de Gruyter, Berlin, New-York, 2000.
MR 1740617
[26] Nomura, T.:
Berezin transforms and group representations. J. Lie Theory 8 (1998), 433–440.
MR 1650386
[29] Stratonovich, R.L.:
On distributions in representation space. Soviet Physics. JETP 4 (1957), 891–898.
MR 0088173
[31] Wallach, N.R.:
Harmonic Analysis on Homogeneous Spaces. Marcel Dekker, Inc., 1973.
MR 0498996