Previous |  Up |  Next

Article

Title: An extension of the ordering based on nullnorms (English)
Author: Aşıcı, Emel
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 55
Issue: 2
Year: 2019
Pages: 217-232
Summary lang: English
.
Category: math
.
Summary: In this paper, we generally study an order induced by nullnorms on bounded lattices. We investigate monotonicity property of nullnorms on bounded lattices with respect to the $F$-partial order. Also, we introduce the set of incomparable elements with respect to the F-partial order for any nullnorm on a bounded lattice. Finally, we investigate the relationship between the order induced by a nullnorm and the distributivity property for nullnorms. (English)
Keyword: nullnorm
Keyword: partial order
Keyword: bounded lattice
Keyword: distributivity
MSC: 03B52
MSC: 03E72
idZBL: Zbl 07144935
idMR: MR4014584
DOI: 10.14736/kyb-2019-2-0217
.
Date available: 2019-09-30T14:52:13Z
Last updated: 2020-04-02
Stable URL: http://hdl.handle.net/10338.dmlcz/147833
.
Reference: [1] Aşıcı, E.: An order induced by nullnorms and its properties..Fuzzy Sets Syst. 325 (2017), 35-46. MR 3690353, 10.1016/j.fss.2016.12.004
Reference: [2] Aşıcı, E.: On the properties of the $ F $-partial order and the equivalence of nullnorms..Fuzzy Sets Syst. 346 (2018), 72-84. MR 3812758, 10.1016/j.fss.2017.11.008
Reference: [3] Aşıcı, E.: Some notes on the $ F $-partial order..In: Advances in Fuzzy Logic and Technology 2017 (J. Kacprzyk , E. Szmidt, S. Zadroźny, K. Atanassov, and M.Krawczak, eds.), IWIFSGN 2017, EUSFLAT 2017. Advances in Intelligent Systems and Computing 641, Springer, Cham, pp. 78-84. 10.1007/978-3-319-66830-7_7
Reference: [4] Aşıcı, E.: Some remarks on an order induced by uninorms..In: Advances in Fuzzy Logic and Technology 2017 (J. Kacprzyk , E. Szmidt, S. Zadroźny, K. Atanassov, and M.Krawczak, eds.), IWIFSGN 2017, EUSFLAT 2017. Advances in Intelligent Systems and Computing 641, Springer, Cham, pp. 69-77. 10.1007/978-3-319-66830-7_7
Reference: [5] Aşıcı, E., Karaçal, F.: On the $T$-partial order and properties..Inform. Sci. 267 (2014), 323-333. MR 3177320, 10.1016/j.ins.2014.01.032
Reference: [6] Aşıcı, E., Karaçal, F.: Incomparability with respect to the triangular order..Kybernetika 52 (2016), 15-27. MR 3482608, 10.14736/kyb-2016-1-0015
Reference: [7] Birkhoff, G.: Lattice Theory. Third edition..Providence, 1967. MR 0227053, 10.1090/coll/025
Reference: [8] Calvo, T., Baets, B. De, Fodor, J.: The functional equations of Frank and Alsina for uninorms and nullnorms..Fuzzy Sets Syst. 120 (2001), 385-394. Zbl 0977.03026, MR 1829256, 10.1016/s0165-0114(99)00125-6
Reference: [9] Casasnovas, J., Mayor, G.: Discrete t-norms and operations on extended multisets..Fuzzy Sets Syst. 159 (2008), 1165-1177. Zbl 1176.03023, MR 2416385, 10.1016/j.fss.2007.12.005
Reference: [10] Çaylı, G. D.: A characterization of uninorms on bounded lattices by means of triangular norms and triangular conorms..Int. J. General Syst. 47 (2018), 772-793. MR 3867053, 10.1080/03081079.2018.1513929
Reference: [11] Çaylı, G. D.: On a new class of t-norms and t-conorms on bounded lattices..Fuzzy Sets Syst. 332 (2018), 129-143. MR 3732255, 10.1016/j.fss.2017.07.015
Reference: [12] Çaylı, G. D., Drygaś, P.: Some properties of idempotent uninorms on a special class of bounded lattices..Inf. Sci. 422 (2018), 352-363. MR 3709474, 10.1016/j.ins.2017.09.018
Reference: [13] Çaylı, G. D., Karaçal, F., Mesiar, R.: On a new class of uninorms on bounded lattices..Inf. Sci. 367-368 (2016), 221-231. MR 3684677, 10.1016/j.ins.2016.05.036
Reference: [14] Drewniak, J., Drygaś, P., Rak, E.: Distributivity between uninorms and nullnorms..Fuzzy Sets Syst. 159 (2008), 1646-1657. MR 2419975, 10.1016/j.fss.2007.09.015
Reference: [15] Drygaś, P.: Distributive between semi-t-operators and semi-nullnorms..Fuzzy Sets Syst. 264 (2015), 100-109. MR 3303666, 10.1016/j.fss.2014.09.003
Reference: [16] Drygaś, P.: A characterization of idempotent nullnorms..Fuzzy Sets Syst. 145 (2004), 455-461. MR 2075840, 10.1016/s0165-0114(03)00259-8
Reference: [17] Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E.: Aggregation Functions..Cambridge University Press, 2009. Zbl 1206.68299, MR 2538324, 10.1017/cbo9781139644150
Reference: [18] Jayaram, B., Rao, C. J. M.: On the distributivity of implication operators over $ T $ and $ S $ norms..IEEE Trans. Fuzzy Syst. 12 (2004), 194-198. 10.1109/tfuzz.2004.825075
Reference: [19] Karaçal, F., Ince, M. A., Mesiar, R.: Nullnorms on bounded lattices..Inf.Sci. 325 (2015), 227-236. MR 3392300, 10.1016/j.ins.2015.06.052
Reference: [20] Karaçal, F., Kesicioğlu, M. N.: A T-partial order obtained from t-norms..Kybernetika 47 (2011), 300-314. Zbl 1245.03086, MR 2828579
Reference: [21] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms..Kluwer Academic Publishers, Dordrecht 2000. Zbl 1087.20041, MR 1790096, 10.1007/978-94-015-9540-7
Reference: [22] Mas, M., Mayor, G., Torrens, J.: t-operators..Int. J. Uncertain. Fuzz. Knowl.-Based Syst. 7 (1999), 31-50. Zbl 1005.03047, MR 1691482, 10.1142/s0218488599000039
Reference: [23] Mas, M., Mayor, G., Torrens, J.: The distributivity condition for uninorms and t-operators..Fuzzy Sets Syst. 128 (2002), 209-225. Zbl 1005.03047, MR 1908427, 10.1016/s0165-0114(01)00123-3
Reference: [24] Schweizer, B., Sklar, A.: Statistical metric spaces..Pacific J. Math. 10 (1960), 313-334. Zbl 0136.39301, MR 0115153, 10.2140/pjm.1960.10.313
.

Files

Files Size Format View
Kybernetika_55-2019-2_1.pdf 484.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo