Previous |  Up |  Next

Article

Title: Random noise and perturbation of copulas (English)
Author: Mesiar, Radko
Author: Sheikhi, Ayyub
Author: Komorníková, Magda
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 55
Issue: 2
Year: 2019
Pages: 422-434
Summary lang: English
.
Category: math
.
Summary: For a random vector $(X,Y)$ characterized by a copula $C_{X,Y}$ we study its perturbation $C_{X+Z,Y}$ characterizing the random vector $(X+Z,Y)$ affected by a noise $Z$ independent of both $X$ and $Y$. Several examples are added, including a new comprehensive parametric copula family $\left(\mathcal{C}_k \right) _{k \in [-\infty, \infty]}$. (English)
Keyword: copula
Keyword: noise
Keyword: perturbation of copula
Keyword: random vector
MSC: 60E05
MSC: 62H20
idZBL: Zbl 07144946
idMR: MR4014595
DOI: 10.14736/kyb-2019-2-0422
.
Date available: 2019-09-30T15:12:48Z
Last updated: 2020-04-02
Stable URL: http://hdl.handle.net/10338.dmlcz/147845
.
Reference: [1] Cherubini, U., Gobbi, F., Mulinacci, S.: Convolution Copula Econometrics..Springer-Briefs in Statistics 2016. MR 3586607, 10.1007/978-3-319-48015-2
Reference: [2] Durante, F., Sempi, C.: Principles of Copula Theory..CRC Chapman and Hall, Boca Raton 2016. MR 3443023, 10.1201/b18674
Reference: [3] Gijbels, I., Herrmann, K.: On the distribution of sums of random variables with copula-induced dependence..Insurance Math. Econom. 59 (2014), C, 27-44. MR 3283206, 10.1016/j.insmatheco.2014.08.002
Reference: [4] Joe, H.: Multivariate Models and Dependence Concepts..Chapman and Hall 1997. Zbl 0990.62517, MR 1462613, 10.1201/b13150
Reference: [5] Nelsen, R. B.: An introduction to copulas. Second edition..Springer Series in Statistics, Springer-Verlag, New York 2006. MR 2197664, 10.1007/0-387-28678-0
Reference: [6] Sklar, A.: Fonctions de répartition a n dimensions et leurs marges..Publ. Inst. Statist. Univ. Paris \mi{8} (1959), 229-231. MR 0125600
Reference: [7] Wang, R.: Sum of arbitrarily dependent random variables..Electron. J. Probab. 19 (2014), 84, 1-18. MR 3263641, 10.1214/ejp.v19-3373
Reference: [8] Williamson, R. C., Downs, R. C.: Probabilistic arithmetic I: numerical methods for calculating convolutions and dependency bounds..Int. J. Approx. Reason. 4 (2014), 89-158. MR 1042207, 10.1016/0888-613x(90)90022-t
.

Files

Files Size Format View
Kybernetika_55-2019-2_12.pdf 914.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo